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Abstract

This paper addresses the problem of similar image re-
trieval, especially in the setting of large-scale datasets with
millions to billions of images. The core novel contribution
is an approach that can exploit prior knowledge of a seman-
tic hierarchy. When semantic labels and a hierarchy relat-
ing them are available during training, significant improve-
ments over the state of the art in similar image retrieval
are attained. While some of this advantage comes from the
ability to use additional information, experiments exploring
a special case where no additional data is provided, show
the new approach can still outperform OASIS [6], the cur-
rent state of the art for similarity learning. Exploiting hi-
erarchical relationships is most important for larger scale
problems, where scalability becomes crucial. The proposed
learning approach is fundamentally parallelizable and as
a result scales more easily than previous work. An addi-
tional contribution is a novel hashing scheme (for bilinear
similarity on vectors of probabilities, optionally taking into
account hierarchy) that is able to reduce the computational
cost of retrieval. Experiments are performed on Caltech256
and the larger ImageNet dataset.

1. Introduction

This paper addresses the problem of similar image retrieval

– given a query image, find similar images in a large image

collection – as depicted in figure 1. As illustrated there, re-

sults show that exploiting hierarchical relationships can sig-

nificantly improve retrieval accuracy. Incorporating hierar-

chical relationships is becoming more important as datasets

grow larger. The potential benefit is largest when categories

are sampled “densely” and fine grained distinctions must be

made (e.g. [4, 7]). In order to handle such large scale data,

computational efficiency and scalability is a critical aspect

to effective use of hierarchy in retrieval.

Our approach demonstrates how to effectively incorpo-

rate prior human knowledge in the form of a hierarchical

structure defined on semantic attributes of images. For

instance given semantic attributes like containing a horse,

dog, or windmill, a predefined hierarchy might let us know

Without hierarchy

With hierarchy

Query  image Top 5 retrieved images

Without hierarchy

With hierarchy

With hierarchy

Without hierarchy

Figure 1. Images retrieved by exploiting hierarchy versus those

without considering hierarchy. Green bars show ground truth sim-

ilarity to the query, defined based on the category hierarchy(see

Sec. 5.2). Longer bars indicate more similarity.

that an image containing a horse would be more similar to

one containing a dog than to an image containing a wind-

mill. It is feasible to specify a hierarchical structure in terms

of semantic attributes, but may be quite difficult to do so di-

rectly in terms of low level features.

The current state of the art for similar image retrieval

stems from a strong line of work on learning the underly-

ing similarity function used for retrieval [6, 33, 15]. In that

work, the goal is to learn a function that computes similar-

ity directly from low level feature vectors from images, and

does not allow variable measures of similarity that could

encode hierarchical structure. It may be possible to adapt

some of those strategies to take into account variable simi-

larities for hierarchical structure, but would require modifi-

cation of the techniques, and would not necessarily improve

the scalability or parallelism of the approaches.

Our approach takes a different track, learning to rec-
ognize semantic attributes of images, and then using a
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predefined comparison function – based on a known hi-
erarchal structure – to produce a similarity score for
retrieval. Learning to recognize semantic attributes can

be easily parallelized, making this approach very scalable.

That this approach requires labeled data for semantic at-

tributes is potentially limiting, but in practice almost every

single experiment in the related work on similarity learning

begins from data with labels, such as the categories in Cal-

tech256, or queries that produced the images in OASIS [6].

Furthermore, for non-overlapping categories, it is possible

to reconstruct the category labels directly from the training

data used for OASIS [6], LMNN [33], MCML [15], and

other techniques. We show that significant improvements

over the state of the art are possible when labels and a hi-

erarchy are known or when labels can be inferred but hier-

archy is not available 1. Nevertheless, when labels are truly

un-available and cannot be inferred, the proposed technique

will not be appropriate or optimal.

Once a similarity function is determined the next chal-

lenge is efficient retrieval of the most similar database im-

ages for a query, with respect to the hierarchical similarity.

This paper presents a novel hashing strategy that provides
a sub-linear time solution for retrieval and forms a gen-
erally usable component on its own. When combined with

the training for the semantic classifiers that is linear in the

input data and inherently parallelizable, the overall system

is very scalable. To make this concrete, our semantic in-

dex structure can be built on 600,000 images in 14 days on

a single cpu, or because of the easy parallelizability, in 20
minutes of wall clock time using 1000 cpus. Using hashing,

retrieval of similar images in the resulting index can be per-

formed in 3 milliseconds per query with accuracy close to

90% of brute force search and computational cost less than

0.001 times that of brute force.

2. Related Work

We review closely related work on hierarchy, similarity

learning, semantic indexing, and hashing for retrieval.

Work on recognition in computer vision has reached the

scale – in terms of number of classes – where hierarchical

relationships between classes begin to 1) be non-trivial, 2)

have an impact on recognition performance, and 3) have the

potential to improve recognition accuracy. This has been

demonstrated by work putting existing datasets into hierar-

chies [17], and building large new datasets – e.g. TinyIm-

ages [29] and ImageNet [8] – based on the hierarchical se-

mantic structure in WordNet [12] a major project of the lin-

guistics and natural language processing community. This

line of work has begun to reveal both the effects of hier-

archical structure on classification accuracy [4, 29, 7],and

hints at the promise of exploiting such structure for clas-

1This is actually the case in most work on similarity learning [33, 15, 6].

sification when evaluated in terms of the hierarchy [7] as

well as showing improved classification given very small

amounts of training data [13].

In this paper we demonstrate that it is possible to ex-

ploit hierarchical structure for a different but related task

– similar image retrieval – gaining significant improve-

ments in accuracy. This complements recent work advanc-

ing the learning of similarity functions, especially for re-

trieval, e.g. [15, 33, 6], that does not yet address hierar-

chy. Some of our experiments compare with OASIS from

Chechik et al. [6], the current state of the art in learning

similarity functions for retrieval 2, and we demonstrate sig-

nificant improvement by adding hierarchy. Furthermore the

proposed techniques are easily parallelizable, allowing bet-

ter scaling than [6] (even without hierarchy) which already

improved computational efficiency significantly over other

techniques [15, 33].

Many of the improvements shown stem from exploiting

high level knowledge in the form of a semantic hierarchy.

This is related to recent research in explicitly estimating

high level semantic attributes for recognition [21, 22, 11,

23, 31]. In particular [21] allows retrieval queries using lan-

guage to refer to the semantic attributes of faces. We con-

sider queries specified by an image, and add a hierarchical

relationship between semantic attributes. Recent work [31]

considers a representation similar in spirit to the semantic

representation we use, but focuses on using the represen-

tation for classification – using multiple training examples

for a class specific query, as opposed to a single example

as a query – instead of retrieval. There is also related work

from the multimedia and information retrieval community,

especially on TrecVid e.g. [2, 18] (and references therein),

that explicitly train object or concept “detectors” and use

their output as features for retrieval based on high level (or

textual) queries.

Efficient retrieval with respect to a similarity function is

important for very large scale settings. Significant work has

been done on hashing for the related problem of finding ap-

proximate nearest neighbors [1, 9]. In our setting, retrieval

using bilinear similarity on vectors of probabilities is a core

subroutine, and we introduce a novel hashing scheme to ac-

complish this. Note that this is a data independent hashing

approach in contrast to recent approaches based on learning

hashing functions for vision [20, 28, 30].

3. Exploiting Hierarchy for Retrieval

In order to exploit hierarchical knowledge in retrieval,

we consider the core subroutine of evaluating the similar-

ity Sim between two images. Retrieval consists of find-

ing the images from a large database with greatest simi-

larity to a query image. In previous work, much of the

2Closely related in technique to [14] for classification.
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Figure 2. Compared to previous work (left) our approach to learn-

ing similarity functions (right) separates the learned similarity

function into two parts, an estimate of probabilities for semantic

labels, and a hierarchical comparison function. The hierarchical

comparison function is deterministically built from prior knowl-

edge and only the semantic models are learned.

effort in building a system for retrieval was in learning

the similarity function that mapped low-level image fea-

tures computed from image to a similarity value. For im-

ages a,b,c, and d, let f(·) denote their low level features,

then training can be performed by considering constraints

on pairs, e.g., a and b are more similar than c and d so

Sim(f(a), f(b)) > Sim(f(c), f(d)) + 1 as in [33]. The

state of the art OASIS [6] considers triples of images, where

a was supposed to be more similar to b than to c, yielding

the constraint Sim(f(a), f(b)) < Sim(f(a), f(c)) + 1.

These constraints were used to learn a matrix L so that

Sim(f(a), f(b)) = f(a)′Lf(b).
As illustrated in Figure 2, our approach computes simi-

larity by first estimating probabilities of semantic attributes

for an image s(f(a)), based on low level image features.

Then we use the prior knowledge of the semantic hierar-

chical relationship to deterministically compute a hierar-

chical similarity matrix, S, and the similarity function is

Sim(a, b) = s(f(a))T Ss(f(b)) (Sec. 3.1 & 3.2 ). Not

only does this allow exploiting hierarchical knowledge, but

learning is only needed to build the models for semantic at-

tributes – a process that is much easier to parallelize than

previous approaches to learning similarity.

3.1. Encoding hierarchy in semantic similarity

The core of our approach is to use prior knowledge of a

hierarchy between semantic attributes to compute similarity

for retrieval. We start by discussing a non-probabilistic ver-

sion of such a similarity, and describe an image a by a set

of binary semantic attributes {1 . . . K}. The attributes can

be object categories(“is dog”), part relations(“has legs”), vi-

sual descriptions(“is black”) or in fact any predicate about

the image. We will mainly focus on object class category at-

tributes as they are the dominant type of attributes currently

used and have been extensively studied, but the approach

will extend to arbitrary attributes.

Given the attributes, the similarity between two images

a and b can then be measured as how well their attributes

match. Specifically, let δi(a) ∈ {0, 1} be the indicator func-

tion of image a having attribute i. We define the similarity

as Sim∗(a, b) =
∑

i,j δi(a)Sijδj(b), where S ∈ R
K×K

and Sij is a “matching score” between attribute i and j, i.e.,

the semantic similarity based on prior human knowledge.

We refer to S as the prior matrix.

This is a very general form and encompasses a large class

of semantic similarities. For object category attributes, a

dominate relationship is the “is a” relation that naturally or-

ganizes them into a semantic hierarchy. In this case, S can

be derived by measuring the closeness of categories rela-

tive to the hierarchy. For instance, let S(i, j) = ξ(π(i, j)),
where π(i, j) is the lowest common ancestor of category i
and j and ξ(·) : {1 . . . K} → R is some real function that is

non-decreasing going down the hierarchy,i.e. the lower the

lowest shared ancestor, the more similar categories i and j
are. For example, “is donkey” is much more similar to “is

horse” than “is keyboard” because “donkey” shares a lower

level common ancestor “equine” with “horse” than “object”

with “keyboard”. More concretely ξ(·) can be based on the

height of the node [32]. Note that there are other possible

ways to obtain similarity between attributes such as auto-

matic text mining[27] when such a manually constructed

hierarchy is not available.

A special case is when the attributes are mutually exclu-

sive categories and S is the identity matrix, so Sim∗(a, b)
simply indicates whether a and b belong to the same cate-

gory. Refer to this as a “flat” setting as there is no hierar-

chical relationship between the attributes. The attributes are

treated as either identical or different and a retrieval system

optimized for this similarity would be incapable of rank-

ing “horse” higher than “keyboard” given a query “donkey”.

This is setting where most existing techniques were devel-

oped and evaluated [15, 33, 6].

So far our similarity employs hard assignment of binary

attributes. However there is often uncertainty in represent-

ing images with semantic attributes. On one hand, natural

language is inherently ambiguous and categories overlap.

There will always be objects that evade exact categoriza-

tion. Also perfect classification of semantic attributes is un-

realistic. Thus instead of using binary indicators, we rep-

resent an image a as a vector s(f(a)) = x ∈ R
K where

xi = Pr (δi(a) = 1|a), i.e. the probability that image x has

attribute i. Given image a, b and their vector of probabilities

x, y, we redefine the similarity to be the expectation of the

non-probabilistic version, i.e. Sim(a, b) = E Sim∗(a, b) =∑
i,j xiSijyj , or simply Sim(a, b) = xT Sy. This is as-

suming that image a and b are drawn independently, as is
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valid for most retrieval settings. We will refer to this form

of similarity xT Sy as bilinear similarity.

Note that although we have mainly used mutually exclu-

sive object categories as attributes in our discussion and will

also focus on this case in the experiments due to availability

of datasets, our formulation is not restricted to mutually ex-

clusive categorization of images. An image can have multi-

ple objects and thus any number of attributes “turned on”.

3.2. Learning semantic attributes

Once the prior matrix S is given, to compute the bilin-

ear similarity xT Sy, a critical step is to learn models of

semantic attributes and obtain probabilities. For large scale

retrieval, important considerations are scalability and effi-

ciency of learning, as real world retrieval systems need to

handle tens of thousands of semantic attributes and to train

from very large datasets.

To obtain the probabilistic attribute representation, we

first learn binary classifiers for each semantic attribute inde-

pendently. For example, in the case of category attributes,

we train 1-vs-all linear SVM for each category. Then we

calibrate the outputs of the classifiers into probabilities. In

our experiments, we fit a sigmoid function to each SVM

classifier [25] to convert the output into a probability. For

non-overlapping categories, we further normalize the prob-

abilities to form a vector whose entries sum to one 3.

Note that both steps are easily parallelizable as the clas-

sifiers and sigmoid functions can be learned independently.

Also learning the semantic attributes is decoupled from the

specification of the prior matrix S. In contrast to existing

similarity learning algorithms that learn similarity from low

level features, our scheme can be adapted to new similarity

measures by simply replacing the prior matrix in retrieval

time, without relearning of the attribute models.

4. Efficient indexing
Efficiency is a major challenge for large scale retrieval

Merely considering object categories as attributes may re-

sult in a probability vector of tens of thousands dimen-

sions [3]. Computing the similarity between a query and

each database image thus becomes prohibitively expensive.

We introduce a novel technique based on locality sen-

sitive hashing(LSH) [1] to achieve sublinear retrieval time

for bilinar similarity. The key is to construct on a fam-

ily of hash functions H such that Pr h∈H (h(x) = h(y)) =
Sim(x, y) [5] or Pr(h1(x) = h2(y)) = Sim(x, y) with h1

and h2 drawn independently [9]. For a query point y, one

retrieves the database points from the bin of h(y) and rerank

3Note that the probabilities can be made more accurate by joint cali-

bration. For example, for non-overlapping categories one can use random

forest of probability estimation trees(PET) [26] to obtain more accurate

multiclass probabilities. We find that for large training data the simplicity

and efficiency outweighs the marginal accuracy gain from PETs.

them to produce the final results. In practice, one may con-

catenate multiple hash functions to reduce false collision

and use multiple hash tables to increase recall.

For our bilinear similarity Sim(x, y) = xT Sy where

x and y are vectors of probabilities, we provide theoreti-

cal results on sufficient conditions of S and corresponding

construction techniques, informally: (1)If S is element-wise
non-negative, symmetric and diagonally dominant, then
there exists a construction(Lemma A.2); (2)If S is derived
from a hierarchy such that classes sharing lower common
ancestors have higher similarity, then there exists a con-
struction(Lemma A.7).

Constructions and proof sketches are in the appendix

with detailed proofs in supplementary material. The hash-

ing construction for a special case, where the semantic at-

tributes are non-overlapping category labels and S is iden-

tity matrix, is especially simple: h(x) is an integer from 1
to K sampled according to the multinomial distribution x.

In implementation, h is parametrized by a uniformly drawn

real number p ∈ [0, 1) and returns the index of the interval

where p falls in x.

One closely related existing technique is the random

hyperplane LSH [5] for approximating cosine similarity

Sim(x, y) = xT y
‖x‖‖y‖ that measures the angle between x

and y, different from ours due to the L2 normalization. We

compare empirical performance with it in Sec. 5.5.

5. Experiments

5.1. Datasets and evaluation criteria

We use Caltech256 [16] and ILSVRC [32], a subset

of ImageNet [8] with 1000 classes and 1.2 million im-

ages 4. We use Caltech256 to compare with existing sim-

ilarity learning algorithms and use ILSVRC for large scale

experiments. Both datasets assign one class label per image.

The categories of ILSVRC are hierarchically organized.

For both datasets, we split the data into training and test,

use the training set to learn semantic models and use the test

to evaluate retrieval performance. For retrieval we obtain

the top k neighbors by brute force scan except in Sec. 5.5.

Unless otherwise noted, all evaluation is done by using each

of the test images to query against the rest of the test images

and reporting the average.

We use a ranking based criteria for evaluation. Given a
similarity function, Sim(ai, aj) ∈ [0,∞), between images
ai and aj , it can be used assign a rank, rq

i ∈ {1, . . . , n} to
n images {ai}i={1,...,n} in a dataset with respect to a query

image q so that rq
i <= rq

j iff Sim(q, ai) >= Sim(q, aj).
Let Simg(x, y) be “ground truth” or desired values of the
similarity function. We can evaluate a ranking of k data

4we do not use the newly collected validation and test sets as they are

too small for retrieval evaluation.
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Figure 3. Precision vs. rank for similarity based retrieval on ILSVRC images from 1000 categories. Left: Hierarchical precision of our

bilinear similarity with hierarchy encoded prior matrix (B-Hie) against others as described in Sec. 5.2. For all curves, stdev by swapping

training and test is too small to show (≤ 0.002). Middle: Flat precision of our bilinear similarity with identity prior matrix(B-Flat) against

others as described in Sec. 5.3. Stdev by swapping training and test is too small to show (≤ 0.001). Right: Flat precision on a subset 100

categories(Sec. 5.4). Using training data from the 100 categories (“seen in training”) performs the best, but training on 900 categories not

including any of the 100 test categories (“unseen in training”) compares favorably to directly using SPM without any training.

items with respect to a query q by a precision,

p(Sim, q, Simg, k) =

∑k
r

q
i =1 Simg(q, ai)

maxo

∑k
i=1 Simg(q, aoi)

(1)

The numerator is the sum of ground truth similarities

for the most similar k database items based on similarity

s for a query q. The denominator is the sum of ground

truth similarities for the best possible k database items. The

complexity of the evaluation function allows it to repre-

sent the standard “precision at k” for category labels when

Simg(ai, aj) ∈ {0, 1} is 1 for ai and aj with the same cat-

egory label and 0 otherwise, as well as more general scores

when Simg(ai, aj) ∈ [0, 1] is a more nuanced measure of

similarity, for instance based on hierarchical relationships

between semantic categories.

5.2. Hierarchical retrieval

We define the ground truth similarity in a similar way the

hierarchical cost is defined in ILSVRC [32]. Let h(π(i, j))
be the height of the lowest common ancestor π(i, j) be-

tween class i and class j on the category hierarchy. The

height of a node is the length of the longest path to one of

its leaf node (leaf nodes have height 0). Similarity between

class i and class j is then defined as 1 − h(π(i, j))/h∗,

where h∗ is the height of the root node(19 for ILSVRC).

All classes have similarity 1 to itself. We can then define

the ground truth similarity between image a with ground

truth class ca and image b with cb as Simg(a, b) = 1 −
h(π(ca, cb))/h∗. Precision at top k as in Eqn. 1 is then

the average class similarity between the query and top k re-

turned images divided by the maximum possible similarity

from the dataset (perfect would be 1). We refer to this cri-

teria as hierarchical precision.

We evaluate our similarity on hierarchical precision on

ILSVRC dataset. We split the ILSVRC images 50%-50%

as training and test. To learn the semantic attributes, we

train binary linear SVMs using LIBLINEAR [10] on sparse

21k dimensional vectors formed by a three level SPM [24]

on the published SIFT visual words from a 1000 word code-

book [32]. We use 2-fold cross validation to determine the

parameter C. Probability calibration is done using Platt’s

scaling [25] during cross validation. In retrieval, we set the

prior matrix S such that Sij=1 − h(π(i, j))/h∗, matching

the definition of hierarchical precision.

We compare our bilinear similarity with hierarchy

encoded prior matrix (B-Hie) with various baselines:

(1)SPM: ranking the images by intersection kernel on SPM

histograms of visual words, representing low level fea-

ture based methods that do not use learning; (2) Hard-
Assign: classifying the query image to the most likely

class and ranking others by their probabilities of belong-

ing to this class, equivalent to retrieval by annotation.

(3)Cosine-NoCal: using cosine similarity of the raw out-

puts of semantic classifiers without probability calibration;

(4)Cosine-Flat: using cosine similarity of the probabilities,

same as Cosine-NoCal excpet with probability calibration;

(5)Cosine-Hie: same as bilinear similarity with hierarchy

encoded S except with L2 normalized probability vectors;

(6)B-Flat: using bilinear similarity but without encoding

the hierarchy in the prior matrix, i.e. with S set to identity.

We present the results in Fig. 3(left). Bilinear similarity

with hierarchy encoded(B-Hie) achieves significantly bet-

ter precision than all others. It also demonstrates that all

components of our similarity are essential: (1)learning se-

mantic attributes is important as SPM(directly using low

level features without learning) is quite effective for the first

few nearest neighbors but for the rest of the curve performs

significantly worse than those that use semantic classifiers;

(2)probabilistic representation significantly improves over

hard assignment(B-Flat versus Hard-Assign); (3)probabil-

ity calibration is important as using raw classifier outputs
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Figure 4. Comparison with (dis-)similarity learning methods including OASIS [6], MCML [15], LEGO [19] and LMNN [33] on 10

classes(left), 20 classes(middle) and 50 classes(right) from Caltech256. All curves except ours are from [6].

(Cosine-NoCal) is significantly worse than the calibrated

counterparts(Cosine-Flat & B-Flat) (4)cosine similarity per-

forms significantly worse than bilinear similarity due to

L2 normalization of probability vectors(Cosine-Flat versus

B-Flat & Cosine-Hie versus B-Hie); (5)most importantly,

encoding hierarchy into the prior matrix significantly im-

proves precision, as quantitatively shown by B-Hie ver-

sus B-Flat and qualitatively by Fig. 1, where images from

nearby classes also rank higher.

5.3. Flat retrieval

Our method is motivated by hierarchical retrieval. How-

ever, most existing work is optimized for a special case

where the ground truth similarity between two images are

1 if they are from the same categories and 0 otherwise. The

retrieval precision at top k as defined in Eqn. 1 is then per-

centage of the images from the same class of the query im-

age. We refer to this criteria as flat precision.

To effectively compare with existing work we adapt our

bilinear similarity to this special case by simply setting the

prior matrix to identity in retrieval.

We experimented with our method on Caltech256 [16]

in the same setting as in evaluating OASIS [6]. We use lin-

ear SVMs as the semantic classifiers, trained on the same

features published by the authors of [6], parameter C deter-

mined by by 5-fold cross validation. We report results from

5 random splits of training and testing data (40 training im-

ages and 25 test images per class), as in [6]. Figure 4 shows

our method is on par with OASIS and significantly outper-

forms all other algorithms. Moreover, our scheme is more

efficient. For 50 classes, a single run of OASIS takes 96

seconds to converge [6], while learning all 50 linear SVMs

and sigmoid functions for probability estimation (including

5 trials of parameter C and 5 fold cross validation for each

trial) take 12 seconds in total, on a single CPU.

Next we compare our method with OASIS on the much

larger ILSVRC data and present results in Fig. 3(middle).

We run multiple instances of OASIS with aggressiveness

parameters C = {0.001, 0.01, . . . , 1000} and report the

best after 14 days of training ( our method takes 14 days in

total on one CPU ). We also include a subset of the baselines
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Figure 5. Precision at top 10 vs scanning cost for bilinear LSH and

random hyperplane LSH as described in Sec. 5.5

from Fig. 3(left) excluding those optimized for hierarchy.

OASIS seems slower to converge with the larger dataset

and higher feature dimensionality (21K versus 1K for Cal-

tech256) as it is still worse than SPM. Note that OASIS is

inherently sequential while our method can be easily paral-

lelized by training each semantic classifier independently.

5.4. Cross-category generalization

A potential advantage of using semantic attributes is the

ability to generalize to new categories, as demonstrated

in [23, 27] in a classification setting. We evaluate how our

method can generalize to unseen categories in a retrieval

setting. Only 900 of the 1000 ILSVRC semantic attributes

are used to build the semantic representation and retrieval

is only evaluated for categories for which no images are

seen during training (“unseen in training” curve in Fig 3

right). While performance is lower than then when exam-

ple images from those categories are seen in training (“seen

in training” curve in Fig. 3 right) it is still better than the

raw feature comparison baseline for much of the retrieval

list. Note that, as in all other experiments, training and test

image sets are disjoint.

5.5. Indexing efficiency

We evaluate the effectiveness of our bilinear LSH by

measuring retrieval precision versus scanning cost. Scan-

ning cost is the percentage of the data points needed to be

scanned for top k retrieval, the dominating computation for

retrieval. Brute force linear scan would result 1.0 scan cost
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and maximum precision. One can adjust the number of hash

tables and the number of hash function concatenations to

trade off between precision and scanning cost. We com-

pare our hashing technique with the widely used random

hyperplane LSH [5] on retrieval. Random hyperplane LSH

approximates the cosine similarity xT y
‖x‖2‖y‖2

by repeatedly

selecting a random hyperplane and project vector x to one

bit depending on which side x is on. To compare fairly with

random hyperplane LSH, we set our prior similarity ma-

trix S to identity and use flat precision to evaluate. We set

the length of hash code for both methods to be the same(20

bits). In Fig. 5, we vary the number of hash tables to pro-

duce the precision versus scanning cost curves. Fig. 5 shows

that bilinear LSH achieves a precision of 0.15 for top 10 im-

ages, very close to the precision (0.17) of linear scan, while

examining only 0.1% of the database points. This is signif-

icantly better than random hyperplane LSH.

6. Conclusion
We have presented an approach that can exploit prior

knowledge of a semantic hierarchy for similar image re-

trieval, and is scalable to very large retrieval problems. Ex-

periments show that adding hierarchical knowledge signifi-

cantly increases retrieval performance. In addition we show

that a handicapped version of our system – without prior

hierarchical information – can start with the same training

information as the state of the art for similarity function

learning (OASIS) and learn a more accurate similarity func-

tion with less total computation, and much less “wall clock

time” due to significantly better inherent parallelism. We

note that our technique should be seen to complement pre-

vious work on similarity learning as it is most useful when

some explicit labels are available at training time (a com-

mon case). Our final contribution is a hashing scheme for

bilinear similarity on probability distributions that is shown

to provide efficient (sub-linear) retrieval in our setting, and

may be useful in a wide range of applications. This com-

pletes an end-to-end system for very large scale hierarchical

retrieval that has inherent parallelization, linear time train-

ing, sub-linear time retrieval, and better accuracy and scal-

ability than the state of the art.
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A. Proofs
We outline two of the proofs for non-overlapping cate-

gories(for probability vector x,
∑

i xi = 1). We present the

general case and more details in supplementary materials.

Definition A.1. A matrix S ∈ R
K×K is hashable, if there

exists a λS > 0 and, for any ε > 0, a distribution on a

family H(S, ε) of hash functions h(·; S, ε) such that for any

probability vectors x, y ∈ R
K

0 ≤ Pr (h1(x; S, ε) = h2(y; S, ε)) − λS · xT Sy ≤ ε

where h1 and h2 are drawn independently from H(S, ε).

Lemma A.2. If S is symmetric, element-wise non-negative
and diagonally dominant, that is, ∀i = 1, . . . , K, sii ≥∑

j �=i sij , then S is hashable.

Proof. Define a K × (K + 1) matrix Θ = (θij), where

∀i ≤ K, j ≤ K, i �= j, θij =
√

ŝij and ∀i ≤ K,

θii =
√

ŝii −
∑

j �=i ŝij , θi,K+1 = 1 − ∑K
j=1 θij where

Ŝ = λS ·S with λS chosen to ensure θi,K+1 ≥ 0. Each row

of Θ sums to one, and Θ without last column is symmetric.

Consider hash functions of the form h : ΔK−1 → 2N,

where 2N is all subsets of natural numbers. Note that

h(x) = h(y) is defined as set equality, that is, the order-

ing of elements does not matter.

To construct H(S, ε), let N ≥ 1/ε. Then h(x; S, ε)
is computed as follows: (1) Sample α ∈ {1, . . . , K} ∼
multi(x); (2) Sample β ∈ {1, . . . , K + 1} ∼ multi(θα)
where θα is the αth row of Θ; (3) If β ≤ K, return {α, β};

(4) Randomly pick γ from {K+1, . . . , K+N}, return {γ}.

Full details are provided in the supplementary materials,

but it can be shown that

Pr(h(x) = h(y)) = λSxT Sy +
1
N

∑
i,j

xiyjθi,K+1θj,K+1

where 0 ≤ 1
N

∑
i,j xiyjθi,K+1θj,K+1 ≤ ε.

Lemma A.3. If S is a matrix of all ones, then S is hashable.

Lemma A.4. If Q is a zero padded extension of S (i.e., Q
is obtained by symmetrically inserting rows and columns of
zeros into S) and S is hashable, then Q is hashable.

Lemma A.5. If S is hashable, then aS is hashable for any
a > 0.

Lemma A.6. If Q =
∑L

l=1 Sl and Sl is hashable for l =
1, . . . , L, then Q is hashable.

Lemma A.7. Let T = G(V, E) be a rooted tree and define
πm,n to be the lowest common ancestor between node m
and n for any m, n ∈ V . Let Vr ⊆ V be subtree rooted
at r (i.e., the set of all nodes descending from node r ∈ V
including r itself). Let Ωr ⊆ Vr be all the leaf nodes of r
and let Kr = |Ωr|. Let fr : Ωr → {1, . . . , Kr} be a one-to-
one mapping of the leaf nodes of r to a set of integers. Let
ξ(·) : V → R be any function defined on V . Let S(r,ξ) ∈
R

Kr×Kr be a similarity matrix induced by r and ξ, where
S

(r,ξ)
ij = ξ(πf−1

r (i),f−1
r (j)),∀i = 1, . . . , Kr, j = 1, . . . , Kr.
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For any r ∈ V , if ξ(·) is non-negative and downward
non-decreasing in the subtree of r, that is, ξ(q) ≥ 0 for any
q ∈ Vr and ξ(q) ≥ ξ(p) for any p, q ∈ Vr such that q is a
child of p, then S(r,ξ) is hashable.

Proof. Let r ∈ V . We prove the claim by induction on

the tree. If r is a leaf node, then S(r,ξ) is a scalar and thus

hashable. Suppose r is an internal node. Let σ(r) be its

direct children. Our inductive hypothesis is that for any

c ∈ σ(r), the similarity matrix S(c,ξ′) induced by c and

any ξ′ : Vc → R, which is non-negative and downward

non-decreasing, is hashable.

Observe that the columns and rows of S(r,ξ) can be par-

titioned by the direct children of r. Also for any c, d ∈ σ(r)
and c �= d , S

(r,ξ)
fr(Ωc),fr(Ωd) = ξ(πΩc,Ωd

) = ξ(r) ·1, where 1

is a matrix of all ones. Thus S(r,ξ) = ξ(r)·1+
∑

c∈σ(r) Q(c)

where Q
(c)
ij = S

(r,ξ)
ij −ξ(r) if i, j ∈ fr(Ωc) and 0 otherwise

Let ξ′(·) = ξ(·)− ξ(r). The lowest common ancestor of

the leaf nodes of r cannot be higher than r and ξ is down-

ward non-decreasing, hence ξ′(d) ≥ 0 for any d ∈ Vr and

ξ′(d) is downward non-decreasing. By the inductive hy-

pothesis, given any c ∈ σ(r), the similarity matrix S(c,ξ′)

induced by c and ξ′ is hashable. We conclude the proof by

showing that Q(c) is a zero padded extension of S(c,ξ′). It

follows from Lemmas A.3-A.6 that S(r,ξ) is hashable.
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