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Abstract

We address the problem of finding point correspondences in
images by way of an approach to template matching that is
robust under affine distortions. This is achieved by apply-
ing “geometric blur” to both the template and the image,
resulting in a fall-off in similarity that is close to linear in
the norm of the distortion between the template and the im-
age. Results in wide baseline stereo correspondence, face
detection, and feature correspondence are included.

1. Introduction
Many problems in computer vision involve as a key subrou-
tine solving a version of the correspondence problem. In
the case of stereo and long range motion, the goal is to find
corresponding points that are projections, in the different
views, of the same point in 3D space. Many approaches to
object recognition also require solving the correspondence
problem, in this case of a fiducial point on a 3D model or
a 2D view, to the “same” point in an input. Typical ap-
proaches to solving the correspondence problem are based
on some form of template matching, comparing image win-
dows centered at the two potentially corresponding points.
It is widely recognized that in spite of the considerable ef-
fort that has been devoted to this problem, we do not yet
have a satisfactory solution.

In this paper we discuss our formulation of a template
matching technique with the explicit goal of finding point
correspondences in the presence of geometric distortion. In-
tuitively geometric distortion is the change in relative posi-
tion of features whose local appearance is unchanged. As
a concrete example, features could be intensity edges, and
the geometric distortion could be due to change in pose.

A key component of our technique is that the image is
first decomposed into channels of feature responses before
comparison. This allows uncertainty about the position of
the features to be separated from uncertainty about the ap-
pearance of the features. For the examples in this paper we
will deal with edges and other features related to oriented
edge energy. This component of the technique is itself gen-
erally useful in its own right.

1.1 Related Work

We address work related to making template matching ro-
bust to distortion, as well as work on matching/recognition
using features.

Matching image patches is traditionally done by compar-
ison using SSD or some variant such as normalized cross
correlation. It is well understood that the effectiveness of
such measures will degrade with significant viewpoint or
illumination changes. This leaves two alternatives for the
problem of finding the sub-window V of an image that best
matches a template window W :

1. Simultaneously estimate the distortion T ∗, and sub-
window of the target image V ∗ so that (V ∗, T ∗) =
argmin(V,T )d(V ◦T,W ), where T is a geometric trans-
form, usually bounded to lie in some reasonable range,
and d(·, ·) is a distance-like function.

2. To “blur” the template window, performing matching
in a coarse to fine way. This approach has traditionally
been used in stereo and motion settings. [2]

Solution 1 above is computationally very expensive, as a
result solution 2 is commonly used. One particular version
of the latter approach that has been tried in object recogni-
tion settings is to train a classifier with a large number of
distorted views, and rely on the generalization capabilities
of the classifier to blur in an optimal manner.

Matching gray-level image windows is not the only op-
tion, though over time it has emerged as the preferred ap-
proach for finding matching points across multiple views.
In the context of object recognition, where one has to allow
for illumination variation in addition to viewpoint variation,
there are several approaches using edge detection as a first
step. Examples are template matching based on distance
transforms or chamfer distance [7] and shape contexts[8].
In this work we expand the notion of features beyond edges,
and explicitly formulate a notion of geometric blur for ro-
bust template matching.
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1.2 Our Approach

In this paper we will try to build a generic image matching
engine equally applicable to a range of tasks:

1. Long range motion, finding corresponding points in
images of an object from significantly different view
points, either as a result of camera or object motion.
See Figure 10 for an example of very wide baseline
stereo.

2. Object detection. Here the objective is to determine if
an object similar to a training object is present in an
image, and extract its position. See Figure 9 for an
example of detecting faces.

3. Finding corresponding points on different objects.
Here the objective is to find corresponding points on
different objects, where unlike wide baseline stereo
correspondence we are concentrating on change due
to variation in the object itself. See Figure 8 for an
example of finding features on faces.

In all three of these settings, matching has to proceed by
considering image windows around putative corresponding
points and computing some measure of similarity between
these windows 1. The challenge is in making the windows
“discriminative” and the matching ”robust”. If windows are
small, then they are not discriminative–not enough context
is captured. If windows are large, then the total change in
the windows is large from different camera views. In addi-
tion to the distortion due to varying perspective, there could
be variation between different examples of a category, as in
the case of object recognition. These problems have long
been recognized in the context of stereo matching [6].

We will consider the following model for geometric dis-
tortion in images, where the observed image J is a function
of the original image under some distortion T with some
noise N , all over image coordinates x.

J(x) = I ◦ T (x) + N(x)

In order to match windows robust to geometric distor-
tions, the standard strategy in computer vision is to adopt a
pyramid-like coarse-to-fine approach [2]. At a coarse scale
of the pyramid, the image is a blurred version (typically by
convolution with a Gaussian in the image intensity domain,
possibly subsampled) of the image at a fine scale. This in-
troduces positional blur uniformly at a given level – all the
pixels in a window centered at a feature point have been
made positionally uncertain by an amount related to the σ
of the Gaussian. This is not quite the “right” thing to do if
we are interested in finding point correspondences. If we

1Additional constraints may be available from geometry (e.g. epipolar
geometry, 3d object models) and should be exploited when possible.

let the putative corresponding points be at the center of the
windows, then there is zero positional uncertainty with the
central pixel of the window, and increasing positional un-
certainty associated with more peripheral features. By in-
troducing a uniform positional blur, one is simultaneously
introducing more positional uncertainty than necessary for
the central region of the window and perhaps less positional
uncertainty than appropriate for the peripheral regions of
the window. The main point of this paper is to develop a
notion of “geometric blur” which takes this into account in
the right way. Gaussian blur is “image blur”, the right way
to simplify image intensity structure and de-noise an image
[9] (under certain assumptions) but is not designed with the
criterion of making matching points robust under geometric
distortions.

In section 2, we explain the motivation behind geometric
blur in a simple 1-D setting where affine transforms reduce
to dilation followed by shifts. In section 3, we develop the
idea in the context of matching 2D windows and demon-
strate the superiority of our geometric blur technique over
Gaussian blur for 2D window matching under distortion. In
section 4, results on real images for a variety of matching
applications are shown.

2. Geometric Blur in 1D

A simple example using 1D signals motivates a spatially
varying blur. The template I(x) is a 1D signal consisting
of the sum of three delta functions, as shown in Figure 1.
The problem is to compare the template signal to a spa-
tially dilated (or spatially scaled) version of the template
J(x) = I(x/a). Clearly the correlation at zero offset be-
tween the two is zero for almost all dilations. The typical
solution is to apply a uniform Gaussian blur to the signals
resulting in a gradual decrease in correlation at zero offset
as dilation increases. In the figure we use a box filter for
simplicity, but Gaussians give qualitatively similar results.
Here the problem with uniform blurring becomes evident.
Because the dilation is much more apparent farther from the
origin, the signal is simultaneously “over blurred” near the
origin, and “under blurred” away from the origin. As a re-
sult the correlation will have a varying sensitivity to dilation
for signals of different scales. We propose the alternative,
geometric blur, also shown in the Figure 1. Here the amount
of blur is proportional to the distance from the origin. As
shown, the change in correlation at zero offset is now linear
in the amount of dilation, and deals with the components
of the signal close to the origin consistently with those far
from the origin.

In the rest of this section we will define geometric blur
and make the linearity argument precise in 1D, including
discussion of how the geometric blur can be calculated, and
how to deal with translation.
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Figure 1: Top row: The right is a dilated version of the
signal on the left. Second row: the signals after geometric
blur. Third row: The proportional overlap of the signals
after geometric blur is 1 minus a term proportional to the
dilation, unlike uniform blur (second to bottom row) where
the proportional overlap is dependent on the signal and the
dilation in a highly non-linear manner.

2.1. Definition of Geometric Blur
The geometric blur GI(x) of a signal I(x) over coordinate
x is defined to be:

GI(x) =

∫

T∈T

I(T (x))dT

Where the geometric distortion T is contained in some
set T of bounded transforms. We will usually restrict T to
be a subset of linear transformations and write Tx in place
of T (x). The implications of this definition are covered be-
low and at the end of the section we discuss computation.
The measure for the integral is discussed later.

2.2. Linearity in 1D
As a concrete example, consider the signal I(x) = δx0

(x)
for some x0 > 0 in 1D, as shown in Figure 2. Let J(x) =
δax0

(x) be a geometric distortion of I , where the distortion
is a scale by a factor of a > 0. Now consider the geometric
blur of these two signals for scaling transforms t ∈ [ 1

L
, L],

for some L > 1. This gives us the geometric blur GI for I
as

GI(x) =

∫

t∈[ 1
L

,L]
I(tx)dt

= χ[ x0
L

,Lx0](x)

and similarly the geometric blur for J is

GJ(x) = χ[ ax0
L

,Lax0](x)
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Figure 2: Top Row: A signal of a single impulse and a
dilated version of the same signal, Second Row: The geo-
metric blur of each signal, Third Row: Overlay of the two
signals after geometric blur. The shaded region contributes
to the correlation at zero offset. Fourth Row: Relative over-
lap as a function of dilation.

We now define the first of two normalizations for the
comparison of two geometric blurs:

C̃(GI , GJ) =
1

||GI ||1

∫

x

GI(x)GJ(x)dx

Using the example above we have:

C̃(GI , GJ) =

{

max(1 − a−1
L2−1 , 0) 1 ≤ a

max(1 + a−1
1− 1

L2
, 0) 0 ≤ a ≤ 1 (1)

The important fact here is that C̃(GI , GJ) is indepen-
dent of x0. Furthermore C̃(GI , GJ) falls off linearly in the
change of the dilation a, as shown in Figure 2.

We can extend the above example to signals of the form
I(x) =

∑

i δxi
(x) if the xi are sufficiently separated so that

the geometric blurs
∫

t
δxi

(tx) are disjoint. As the signal
becomes dense, or the range of t becomes large, the blurs
overlap, and linearity no longer holds. However until the
signal becomes very dense the behavior is still somewhat
linear.

At this point we define the second normalization for
comparisons of geometric blur:

Ĉ(GI , GJ) =
1

||GI ||2||GJ ||2

∫

x

GI(x)GJ(x)dx

This normalization gives better results for signals that are
somewhat dense (see Figure 3). Unlike C̃, Ĉ does not fall
off linearly in the change of dilation, but it is still indepen-
dent of x0 in the example above, and in practice has fall-off
close to linear with respect to the change in dilation.
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Figure 3: Top row: A signal and a dilated version of the sig-
nal. Second Row: Geometric blur of both signals. Bottom:
Red line is comparison over varying dilation using C̃, Blue
line (lower) is comparison using Ĉ. The peak is at no dila-
tion and the falloff of both is close to linear in the change in
dilation.

2.3. Computation of Geometric Blur
We show that the potentially troubling computation of the
geometric blur as an integral over an infinite family of dis-
torted versions of the signal can be rewritten as a convolu-
tion with a spatially varying kernel. The resulting formula-
tion allows straightforward approximation.

We first rewrite the integral in the definition of geometric
blur

GI(x) =

∫

T

I(T (x))dT

as

GI(x) =

∫

y

I(y)µ({T : T (x) == y})dy

and finally as

GI(x) =

∫

y

I(x − y)Kx(y)dy

Where Kx(y) is a spatially varying kernel. Notice that
we have replaced the integral over T lying in a family of
geometric distortions with an integral over y lying in the
coordinate space of the signal. The complexity has been
transfered to Kx(y), which depends on x, y, and the mea-
sure we use for T .

The advantage of rewriting the computation of GI in
this manner is that we can approximate the infinite family
Kx(y) by a discrete set of functions {Kxi

(y)} correspond-
ing to a set of {xi}. We definen(x) = argmini|x−xi|, and
we have GI(x) =

∫

y
I(x − y)Kxn(x)

(y)dy.

We can precompute FI,K(x, i) =
∫

y
I(x − y)Kxi

(y)dy
and then “select” the values contributing to GI , by simply
setting: GI(x) = FI,K(x, n(x)). When finding the best
match for a template in an image, this means that each level
of blur can be compared separately using convolutions.

Concretely, consider the example from the previous sub-
section.

GI(x) =

∫

t

I(tx)dx

=

∫

t∈[ 1
L

,L]
δx0

(tx)dx

=

∫

y

δx0(x − y)χ[

(1−L)x

L
,(L−1)x

](y)dy

Here Kx(y) is χ[

(1−L)x

L
,(L−1)x

](y). In this case com-

puting FI,K(x, xi) simply amounts to computing increas-
ingly blurred versions of I(x), and finding the geometric
blur, GI(x) = F (x, n(αx)) simply selects how blurry the
signal at location x should be. A large value for α will re-
sult in more blur, and a small value for α will result in less
blur. For α = 0, we obtain GI(x) = F (x, 0) = I(x).

3. Geometric Blur in 2D

Geometric blur as defined above for 1D extends directly to
2D. For a signal I(x) the geometric blur of the signal is
GI(x) =

∫

T
I(T (x))dT where x now varies over two di-

mensions, the image coordinates, and T varies over some
bounded range of transforms. We will usually consider lin-
ear transforms, and will write Tx in what follows.

Since the image coordinate x varies in 2 dimensions, the
family of kernels Kx(y) for the geometric blur could be
two dimensional. In order to simplify computation we pur-
posely choose a range of transforms T , or equivalently a
measure on the space of transforms that results in Kx(y)
depending only on |x|. This means that the kernel functions
are rotationally symmetric. By biasing the measure on T
appropriately the resulting kernel functions can be taken to
be simple Gaussians. For symmetric kernels we can adjust
the blur just as we did in our 1D example by adjusting a
parameter α where GI(x) = FI,K(x, n(αx)). See figure 4
for an example of Geometric Blur.

Signal Geometrc Blur Uniform Gaussian Blur

Figure 4: Geometric Blur with a spatially varying Gaussian
kernel blurs more farther from the origin.
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3.1 Results on Synthetic Data

We present results on synthetic data that demonstrates the
behavior and capability of geometric blur.

In order to see that geometric blur helps in discrimina-
tion we performed a discrimination task using 200 test pat-
terns. Rotated versions of the test patterns were compared
to the original test patterns. Both the original test patterns
and the rotated versions were blurred by either geometric
blur or a uniform Gaussian blur. For geometric blur, a spa-
tially varying kernel Kx(y) = Gα|x|(y), where Gσ(y) is a
Gaussian with standard deviation σ, was applied. For uni-
form Gaussian blur the kernel Gσ(y) was applied. Then
each blurred rotated pattern was compared to all the blurred
original patterns using normalized correlation and matched
to the closest one. The test patterns used in this example
were random with each pixel in a disc of radius 25 pix-
els being turned on with probability 5%. Figures 5 and 6
show the mis-classification rate as the amount of blur,α or
σ is varied. Geometric blur has much better discriminative
power, and manages to be general enough to handle large
rotation somewhat more effectively than uniform blur.
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Figure 5: Identifying 200 random test images after rotation,
using various amounts (α) of geometric blur.
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Figure 6: Identifying 200 random test images after rotation,
using various amounts (σ) of uniform Gaussian blur.

3.2. Pre-processing to obtain Sparse Signals

Geometric blur is most effective when applied to sparse
signals. Images when considered as 2D brightness sig-
nals are not sparse. However much work indicates that
oriented edge filter responses from images are sparse [4]
[5]. Also the formulation and theoretical results about geo-
metric blur so far have assumed a non-negative signal. To
meet the sparseness and non-negative requirements when
considering real images, we break images up into a num-
ber of channels. Each channel is a half-wave rectified ori-
ented edge response. In particular if E(x) is a filter then
two channels would be C1(x) = [I(x)E(x)]χ[I(x)E(x)>0]

and C2(x) = − [I(x)E(x)]χ[I(x)E(x)<0]. We also use a
contrast normalization on the channels [3]. In particular if
C = [C1(x) . . . Cn(x)] is a vector of channel values at x,
then the normalized version would be 1

|C|2+ε
where we use

an ε = 0.3 for filters with response between +1 and -1. Fig-
ure 7 shows an image and a set of 12 channels resulting
from 6 oriented edge filters.

One useful consequence of treating the positive and neg-
ative components of oriented edge responses separately is
that information about zero crossings is not lost under blur-
ring. Instead of blurring the signal response around a zero
crossing to zero, the positive and negative responses are
both blurred over the area, retaining the information that
there was a zero crossing, but allowing uncertainty as to its
position.

Figure 7: The twelve half-wave rectified channels contrast
normalized from the response of 6 oriented edge filters on
the image. White indicates zero, and black indicates a posi-
tive value. Note that the filter responses are sparse, making
the individual channels appropriate for geometric blur
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4. Results on Real Images

We now present results on real images in three tasks: auto-
matic correspondence for wide base-line stereo, correspon-
dence to a labeled template, and object detection.

4.1. Wide Base-line Stereo

Using the images shown in Figure 10, in one image an inter-
est operator based on corners detects the 21 labeled interest
points and we attempt to find a matching point in the other
image. For geometric blur the images are split into channels
as described above, and a template is taken around each of
the feature points. Matching is done by adding together nor-
malized cross correlation using geometric blur from each
of the channels. We compare this with normalized cross
correlation on the pixel intensities. Only 15 of the interest
points in the original image have obvious correspondences
in the other image, so we show only the 15 matches with
the best matching score for each technique. The best 15
matches for Geometric blur are correct, using windows of
about 1/3 the size of the entire image to provide context.
Normalized cross correlation fares much worse using simi-
larly large windows, and the poor localization for the three
close to correct correspondences show the standard prob-
lem with large windows that geometric blur avoids. With
smaller windows normalized cross correlation matches four
points correctly, but the other 11 top matches are wrong.
Notice that a number of these are corners from the bridge
tower matched to incorrect corners of the bridge tower, this
points to the lack of context from small windows. Using
SSD instead of normalized cross correlation results in sim-
ilarly bad matches. Also, although the results for geometric
blur use a number of filtered channels instead of the raw
gray scale value, using the channels does not improve the
results of SSD or normalized cross correlation on this exam-
ple. Finally note that even though the differences between
the two images are clearly not an affine distortion (consider
the region around one of the feature points near the span of
the bridge), geometric blur performs very well, and makes
the proper trade-off between local information at fine scale,
and more global information at a coarse scale.

4.2. Feature Correspondence

Another application is to find features given a set of masked
templates. In particular detailed faces are masked by hand,
and various fiducial points on the faces are selected. For
each feature point geometric blur was used to find the best
match in target image. The support of the region used for
comparing the geometric blur of the template and target im-
age was fixed by the mask in the template. Results on a
somewhat difficult instance are shown in Figure 8.

4.3. Object Detection
As a special case of the feature correspondence we take a
single feature on the face and use this to perform face de-
tection using geometric blur. Here a set of face templates
is selected by hand, along with a mask for the extent of
the face, and an origin (the nose) for distortion. Figures 9
show the results on images from the Schneiderman Kanade
[1] test set for two example templates. In each case detec-
tions are noted where the correlation after geometric blur is
above some threshold. A single threshold is used for all the
images.

Figure 8: Left: Feature points selected by hand on a masked
off image of a face. For each selected point in the left image,
a template is selected around that point, and the best match
for that template is found in the right image using geomet-
ric blur. There is no consistency required between points.
The template for each point contains the entire face, but is
blurred differently depending on which feature the template
represents.

5. Conclusion
We address the problem of using templates to find point cor-
respondences. Given this goal uniform Gaussian blur is not
correct. Blur should be small near the corresponding points,
and larger away from them. We define geometric blur in
terms of a set of geometric distortions on an image. If we
choose to model distortion with affine transformations, then
the amount of blur varies linearly with distance from corre-
sponding points.

We apply geometric blur to synthetic and real images
for recognition and correspondence tasks. For real images
we first break the image up into channels based on half-
wave rectified responses from oriented edge filters. Then
the geometric blur is applied to these feature channels sepa-
rately. One difference from Chamfer distance methods that
also use features and blur, is that geometric blur has a con-
cept of point correspondence, and allows spatially varying
amounts of distortion, unlike Chamfer distance methods.
Another difference is that we use soft features instead of
binary edges, allowing robustness to choice of threshold.
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Figure 9: Face detection results. The two leftmost images are masked templates. The white circles in the other images
represent the best matches using geometric blur. The templates were compared with each of the images at a range of scales
(differing by a factor of 1.4). The white circles represent the matches above threshold at any scale. A single threshold per tem-
plate is appropriate for detecting faces across multiple images using these templates, indicating good discriminative ability.
Either template individually can produce the detection results shown for all four images, indicating good generalization.

Geometric blur seems useful in a variety of settings and
we are pursuing applications to feature matching, object
recognition, and wide base-line stereo.
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(a) (b)

(c) (d)

Figure 10: (a) 21 points found by the interest operator in image 1. 15 of them have obvious analogues in image 2. (b) Best 15
correspondences from target image using normalized cross correlation and large windows. (3 correct 12 wrong) (note poor
localization on the few “correct” points) (c) Best 15 correspondences in image 2 using geometric blur, all 15 are correct. The
large support (81×81) of the window provides context, and the geometric blur makes the correct tradeoff between fine local
detail, and rough global context. Note that each feature is detected independently, there is no constraint on the geometric
relationship of the detected feature points. This differentiates Geometric Blur from multi-scale optical flow techniques where
smoothness or regularization is used to provide consistent results. (d) Best 15 correspondences from target image using
normalized cross correlation on small (best over all window sizes) windows (4 correct, 11 wrong) (note better localization,
but many of the errors are bridge corners matched to incorrect bridge corners because of lack of context resulting from small
windows.)
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