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Abstract—We introduce the use of describable visual attributes for face verification and image search. Describable visual attributes
are labels that can be given to an image to describe its visual appearance. This paper focuses on images of faces and the
attributes used to describe them, although the concepts also apply to other domains. Examples of face attributes include gender,
age, jaw shape, nose size, etc. The advantages of an attribute-based representation for vision tasks are manifold: they can be
composed to create descriptions at various levels of specificity; they are generalizable, as they can be learned once and then
applied to recognize new objects or categories without any further training; and they are efficient, possibily requiring exponentially
fewer attributes (and training data) than explicitly naming each category. We show how one can create and label large datasets
of real-world images to train classifiers which measure the presence, absence, or degree to which an attribute is expressed in
images. These classifiers can then automatically label new images. We demonstrate the current effectiveness (and explore the
future potential) of using attributes for face verification and image search via human and computational experiments. Finally, we
introduce two new face datasets – named FaceTracer and PubFig – with labeled attributes and identities, respectively.

Index Terms—Face recognition, attribute classification, classifier training, content-based image retrieval, image search.
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1 INTRODUCTION

ONE of history’s most successful books was a five-
volume pharmacopoeia titled De Materia Medica,

written in the first century by the Greek botanist
and physician Pedanius Dioscorides. It is perhaps the
earliest known field guide, giving pictures and written
descriptions of nearly 600 plant species, showing how
each could be found and identified. This work would
be the first in a line of botanical texts including the
ninth century medieval agricultural and toxicological
texts of Ibn Washiyah and the early eighteenth century
Systema Naturae of Carl Linneaus, which laid out the
rules of modern taxonomy. All of these works have in
common an effort to teach the reader how to identify
a plant or animal by describable aspects of its visual
appearance.
While the use of describable visual attributes for

identification has been around since antiquity, it has
not been the focus of work by researchers in computer
vision and related disciplines. Most existing methods
for recognition (e.g., [11], [34], [36], [49]) work by
extracting low-level features in images, such as pixel
values, gradient directions, histograms of oriented
gradients [11], SIFT [32], etc., which are then used to
directly train classifiers for identification or detection.
In contrast, we use low-level image features to first

learn intermediate representations [27], [28], in which
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images are labeled with an extensive list of descrip-
tive visual attributes. Although these attributes could
clearly be useful in a variety of domains such as
object recognition, species identification, architectural
description, action recognition, etc., we focus solely
on faces in this paper. These face attributes can range
from simple demographic information such as gender,
age, or ethnicity; to physical characteristics of a face
such as nose size, mouth shape, or eyebrow thick-
ness; and even to environmental aspects such lighting
conditions, facial expression, or image quality. In our
approach, an extensive vocabulary of visual attributes
is used to label a large dataset of images, which is then
used to train classifiers that automatically recognize the
presence, absence, or degree to which these attributes
are exhibited in new images. The classifier outputs
can then be used to identify faces and search through
large image collections, and they also seem promising
for use in many other tasks such as image exploration
or automatic description-generation.

Why might one need these attributes? What do they
afford? Why not train classifiers directly for the task at
hand? Visual attributes – much like words – are com-
posable, offering tremendous flexibility and efficiency.
Attributes can be combined to produce descriptions
at multiple levels, including object categories, objects,
or even instances of objects. For example, one can
describe “white male” at the category level (a set of
people), or “white male brown-hair green-eyes scar-
on-forehead” at the object level (a specific person),
or add “..., smiling lit-from-above seen-from-left” to
the previous for an instance of the object (a particular
image of a person).
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(a) Attribute labels for two images of the same person (b) Attribute labels for images of two different people
Fig. 1. An attribute classifier can be trained to recognize the presence or absence of a describable aspect of visual appearance.
The responses for several such attribute classifiers are shown for (a) two images of Halle Berry and (b) two images
of different individuals. In (a), notice how most attribute values are in strong agreement, despite the changes in pose,
illumination, expression, and image quality. Conversely, in (b), the values differ completely despite the similarity in these
same environmental aspects. We train a verification classifier on these outputs to perform face verification, achieving 85.29%

accuracy on the Labeled Faces in the Wild (LFW) benchmark [25], comparable to the state-of-the-art.

Moreover, attributes are generalizable; one can learn
a set of attributes from large image collections and
then apply them in almost arbitrary combinations to
novel images, objects, or categories. Better still, at-
tributes are efficient: consider that k binary attributes
may suffice to identify 2k categories, clearly more
efficient than naming each category individually. (Of
course, in practice, the potential benefits are limited
by the problem domain, the type of categories being
considered, and the accuracy of learned classifiers.)
In contrast to existing labeling efforts such as Im-
ageNet [13] and LabelMe [45] that label large col-
lections of images by category or object name, the
use of attributes may provide a significantly more
compact way of describing objects. This would allow
for the use of much smaller labeled datasets to achieve
comparable performance on recognition tasks.

Perhaps most importantly, these attributes can be
chosen to align with the domain-appropriate vocab-
ulary that people have developed over time for de-
scribing faces. This means that they can be used to
describe faces from the coarsest level (such as gender
and age) to more subtle aspects (such as expressions
and shape of face parts) to highly face-specific marks
(such as moles and scars).

While describable visual attributes are one of the
most natural ways of describing faces, people also
frequently use another technique: similes. A person’s
appearance can be described in terms of the similarity
of a part of their face to the same part of another
individual’s. For example, someone’s mouth might be

like Angelina Jolie’s, or their nose like Brad Pitt’s.
Dissimilarities also provide useful information – e.g.,
her eyes are not like Jennifer Aniston’s.

In this work, we show two major uses of classifiers
trained on describable visual attributes and similes:
face verification and image search. Face verification
is the problem of determining whether two faces are
of the same individual. What makes this problem
difficult is that there is enormous variability in the
manner in which an individual’s face presents itself to
a camera: not only might the pose differ, but so might
the expression and hairstyle. Making matters worse
– at least for researchers in biometrics – is that the
illumination direction, camera type, focus, resolution,
and image compression are all almost certain to vary
as well. These manifold differences in images of the
same person have confounded methods for automatic
face recognition and verification, often limiting the
reliability of automatic algorithms to the domain of
more controlled settings with cooperative subjects. [4],
[20], [22], [41], [43], [46], [48].

We approach the unconstrained face verification
problem with non-cooperative subjects by comparing
faces using our attribute and simile classifier outputs
instead of low-level features directly. Fig. 1 shows
the outputs of various attribute classifiers, for (a)
two images of the same person and (b) images of
two different people. Note that in (a), most attribute
values are in strong agreement, despite the changes in
pose, illumination, and expression, while in (b), the
values are almost perfectly contrasting. By training
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(a) Google image search results (b) Attribute-based image search results
Fig. 2. Results for the query “smiling asian men with glasses,” using (a) the Google image search engine (as of July 2009) and
(b) our face search engine. Conventional image search engines rely on text annotations, such as file metadata, manual labels,
or surrounding text, which are often incorrect, ambiguous, or missing. In contrast, we use attribute classifiers to automatically
label images with faces in them, and store these labels in a database. At search time, only this database needs to be queried,
and results are returned instantaneously. The attribute-based search results are much more relevant to the query.

a classifier that uses these labels as inputs for face
verification, we achieve close to state-of-the-art per-
formance on the Labeled Faces in the Wild (LFW) data
set [25], at 85.29% accuracy.

LFW is remarkable for its variability in all of the
aspects of visual appearance mentioned above, which
also makes it a challenging benchmark for face ver-
ification algorithms. Our excellent performance on
this benchmark shows that our particular approach
to building and using attribute classifiers is, at least,
adequate; however, how much better could one do?
The attribute classifiers we train are currently binary,
with continuous outputs approximated by the dis-
tance of a sample to the classification boundary. One
could instead train regressors to directly estimate real-
valued attribute outputs with greater accuracy. An
upper-bound on the expected accuracy of attribute
classification can be found by asking humans to la-
bel attributes. Thus, replacing the automatic classifier
outputs with human labels, we found that accuracy
on LFW goes up to 91.86%. Going even further, we
asked humans to do the entire verification process.
This experiment revealed the ideal to which automatic
algorithms should aspire – 99.20%.

Given the tremendous strides in face recognition
performance over the last two decades, in large
part due to the introduction of larger and more
realistic data sets, we have publicly released two
large datasets: FaceTracer, which contains URLs to
15,000 face images and 5,000 attribute labels; and
PubFig, which contains URLs to 59,476 images of
200 public figures – politicians and celebrities.

Another application of describable visual attributes
is image search. The ability of current search engines
to find images based on facial appearance is limited

to images with text annotations. Yet, there are many
problems with annotation-based image search: the
manual labeling of images is time-consuming; the
annotations are often incorrect or misleading, as they
may refer to other content on a webpage; and finally,
the vast majority of images are simply not annotated.
Figs. 2a and 2b show the results of the query, “smiling
asian men with glasses,” using a conventional image
search engine (Google Image Search, as of July 2009)
and our search engine, respectively. The difference in
quality of search results is clearly visible. Google’s
reliance on text annotations causes it to find images
that have no relevance to the query, while our system
returns only the images that match the query.

Both of our systems first require the creation of a
large dataset of real-world face images. This is done
by downloading images from the internet, running
face detection and alignment, and then obtaining
ground-truth attribute labels, all of which is described
in Sec. 3. From this labeled data, one can train accurate
attribute and simile classifiers fully automatically, as
described in Sec. 4. Performing face verification using
these attributes is described in Sec. 5, which also
contains various experiments and looks at how well
people perform on verification. Finally, the use of
attributes for searching in large collections of images
with faces is described in Sec. 6.

2 RELATED WORK

Our work lies at the intersection of attribute clas-
sification, face verification and content-based image
retrieval. We present an overview of the relevant
work, organized by these topics.
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2.1 Attribute Classification
Prior research on attribute classification has focused
mostly on gender and ethnicity classification. Early
works [10], [21] used neural networks to perform
gender classification on small datasets. The Fisher-
faces work [2] showed that linear discriminant anal-
ysis could be used for simple attribute classification
such as glasses/no glasses. Later, Moghaddam and
Yang [33] used Support Vector Machines (SVMs) [9]
trained on small “face-prints” to classify the gender
of a face, showing good results on the FERET face
database [41]. The works of Shakhnarovich et al. [47]
and Baluja and Rowley [1] used Adaboost [19] to se-
lect a linear combination of weak classifiers, allowing
for almost real-time classification of face attributes,
with results in the latter case again demonstrated on
the FERET database. These methods differ in their
choice of weak classifiers: the former uses the Haar-
like features of the Viola-Jones face detector [52], while
the latter uses simple pixel comparison operators. In
a more general setting, Ferrari and Zisserman [18]
described a probabalistic approach for learning simple
attributes such as colors and stripes.
This journal paper builds on earlier conference

works [27], [28]. Since then, others have also begun
to explore the use of attributes for animal species
identification [29] and object categorization [16]. The
former shows how attributes can be learned from
one dataset and transferred to a new one, possibly
containing novel categories. They demonstrate results
on a newly created animals dataset. The latter shows
how one could learn attribute classifiers and apply
them to object categorization, e.g., on the Pascal VOC
challenge [15]. While clearly demonstrating the po-
tential of using attributes in a more general domain,
their performance on VOC does not yet match the
current state-of-the-art, showing how challenging this
problem is. In contrast, by focusing on faces, we are
able to train more accurate classifiers and use them
to achieve competitive performance on an established
real-world benchmark, as well as apply to them other
tasks such as image search.

2.2 Face Verification
Early work in appearance-based face verification [26],
[51] looked at the L2 distance between pairs of im-
ages in a lower dimensional subspace obtained using
Principal Components Analysis. This was extended
and improved upon by using linear discriminant
analysis [2]. However, these algorithms are mostly
limited to images taken in highly controlled envi-
ronments with extremely cooperative subjects. It is
well understood that variation in pose and expression
and, to a lesser extent, lighting cause significant diffi-
culties for recognizing the identity of a person [56].
Illumination changes can be mostly handled using
a variety of different approaches – the direction of

the image gradient [7] and related image features
such as SIFT [32], the phase of Gabor jets [53], and
gradient pyramids [31] are all highly insensitive to
lighting variation. The Pose, Illumination, and Expres-
sion (PIE) data set and follow-on results showed that
sometimes alignment, especially in 3D, can overcome
the other difficulties [4], [5], [8], [22], [48].

Unfortunately, in the setting of real-world images
such as those in the “Labeled Faces in the Wild”
(LFW) benchmark data set [25] and similar data
sets [3], [14], 3D alignment is difficult and has not (yet)
been successfully demonstrated. Various 2D align-
ment strategies have been applied to LFW – aligning
all faces [23] to each other, or aligning each pair of
images to be considered for verification [17], [35].
Approaches that require alignment between each im-
age pair are computationally expensive. Our work
does not require pairwise alignment. Neither do many
other recent methods on LFW [44], [50], [54], [55], all
of which use a large set of carefully designed local
features. The best-performing of these [55] ranks the
similarity of each face in an input pair to those in
a “background set,” which is similar in spirit to our
simile classifiers.

2.3 Content-Based Image Retrieval (CBIR)
Our search application can be viewed as a form of
CBIR, where our content is limited to images with
faces. Interested readers can refer to the work of
Datta et al. [12] and Lew et al. [30] for a recent
survey of this field. Most relevant to our work is the
“Photobook” system [40], which allows for similarity-
based searches of faces and objects using parametric
eigenspaces. However, their goal is different from
ours. Whereas they try to find objects similar to a
chosen one, we locate a set of images starting only
with simple text queries. Although we use vastly
different classifiers and methods for feature selection,
their division of the face into functional parts such
as the eyes, nose, etc., is echoed in our approach of
training classifiers on functional face regions. While in
this paper we ignore existing text annotations for im-
ages, one could envision using describable attributes
in combination with such annotations for improved
search performance, somewhat akin to the idea pre-
sented in the “Names and Faces” work [3].

3 CREATING LABELED IMAGE DATASETS
Two recent trends in internet services have made
collecting and labeling image data dramatically easier.
The first, large internet photo-sharing sites such as
flickr.com and picasa.com are growing exponentially
and host billions of public images, many with tex-
tual annotations and comments. In addition, search
engines such as Google Images allow searching for
images of particular people (albeit not perfectly). The
second, efficient marketplaces for small amounts of
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Fig. 3. Creating labeled image datasets. Our system downloads images from the internet. These images span many sources
of variability, including pose, illumination, expression, cameras, and environment. Next, faces and fiducial points are detected
using a commercial detector [37] and are stored in a face database. Faces are submitted to the Amazon Mechanical Turk
service, where they are labeled with attributes or identity, which are used to create the FaceTracer and PubFig datasets,
respectively. Both datasets have been publicly released for non-commercial use.

labor, such as Amazon’s Mechanical Turk (MTurk)1,
make it possible to purchase small amounts of web-
based labeling effort with very low overhead. We
exploit both of these trends to create a large dataset of
real-world images with attribute and identity labels,
as shown in Fig. 3 and described next.

3.1 Collecting Face Images
We use a variety of online sources for collecting a
large dataset of real-world images, including search
engines such as Google Images and photo-sharing
websites such as flickr.com. Depending on the type
of data needed, one can either search for particular
people’s names (to build a dataset labeled by identity)
or for default image filenames assigned by digital
cameras (to use for labeling with attributes). The
latter technique allows one to find images that are
otherwise not returned in users’ queries, i.e., images
which are effectively “invisible.” Relevant metadata
such as image and page URLs are stored in the EXIF
tags of the downloaded images.
Next, we apply the OKAO face detector [37] to the

downloaded images to extract faces. This detector also
returns the pose angles of each face, as well as the
locations of six fiducial points: the corners of both eyes
and the corners of the mouth. These fiducial points are
used to align faces to a canonical pose by applying
an affine transformation. This transform is computed
using linear least squares on the detected points and
corresponding points defined on a template face. The
3.1 million aligned faces collected using this proce-
dure comprise the Columbia face database.
We would like to draw attention to three obser-

vations about this database. First, from the statistics
of the randomly-named images, it appears that a
significant fraction of them contain faces (25.7%), and
on average, each image contains 0.5 faces. Second, our
collection of aligned faces is the largest such collection
of which we are aware. It is truly a “real-world”
dataset, with completely uncontrolled lighting and
environments, taken using unknown cameras and in
unknown imaging conditions, with a wide range of
image resolutions. In contrast, existing face datasets

1. http://mturk.com

such as Yale Face A&B [20], CMU PIE [48], and
FERET [41] are either much smaller in size and/or
taken in highly controlled settings. Even the more
expansive FRGC version 2.0 dataset [42] has a limited
number of subjects, image acquisition locations, and
all images were taken with the same camera type. The
most comparable dataset is LFW [25], itself derived
from earlier work [3]. These images were collected
from news sources, and exhibit most of the same types
of variation as the Columbia face dataset.

3.2 Collecting Attribute and Identity Labels
For labeling images in our Columbia face database,
we use the Amazon Mechanical Turk (MTurk) service.
This service matches online workers to online jobs.
Requesters can submit jobs to be completed by workers,
optionally setting various quality controls such as
confirmation of results by multiple workers, filters on
minimum worker experience, etc.

We submitted 73,000 attribute labeling jobs showing
30 images to 3 workers per job, presenting a total of
6.5 million images to users. The jobs asked workers
to select face images which exhibited a specified at-
tribute. (A few manually-labeled images were shown
as examples.) Only labels where all 3 people agreed
were used. From this raw data, we were able to collect
over 125,000 triply-verified positive attribute labels in
a month, for under $5,000.

Although this approach is somewhat similar to
other labeling efforts in the computer vision com-
munity – such as ImageNet [13] and LabelMe [45],
which focus on naming objects, images, and regions
of images using nouns – there are several important
differences. One is that attributes need not be binary
or even discrete; a person’s age or the thickness of
their eyebrows are both continuous attributes. An-
other critical difference is that visual attributes can be
composed more freely than names, which generally
exist in a tree-structured hierarchy. This allows for
the use of a set of general attributes, which can
be combined in an exponential number of ways to
describe many objects at different levels of specificity.
Attributes can therefore compactly provide a great
deal of information, both about object properties and
their identity. Finally, for many objects, it can be
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(a) PubFig Development set (60 individuals)

(b) PubFig Evaluation set (140 individuals)
Fig. 4. The PubFig dataset consists of 59, 476 images of 200 public figures – celebrities and politicians – partitioned into (a)
a development set of 60 individuals and (b) an evaluation set of 140 individuals. Below each thumbnail is shown the number
of photos of that person. There is no overlap in either identity or image between the development set and any dataset that
we evaluate on, including Labeled Faces in the Wild (LFW) [25].

prohibitively expensive to obtain a large number of
labeled training images. In contrast, the same attribute
can be exhibited by many otherwise-unrelated objects,
making it easier to find more example images of the
attribute.
For gathering identity labels, we used the im-

ages downloaded from keyword searches on people’s
names. The MTurk jobs shown to users asked them to
select only the face images of a given person (of whom
a few examples were shown). We also ran additional
jobs pruning images for quality, good alignment, and
some conservative duplicate-removal.
From these attribute and identity labels and our face

database, we have created two publicly available face
datasets, described next.

3.3 FaceTracer Dataset
The FaceTracer dataset is a subset of the Columbia
face database, along with attribute labels. Each of the
15,000 faces in the dataset has a variety of metadata
and fiducial points marked. The attributes labeled

include demographic information such as age and
race, facial features like mustaches and hair color, and
other attributes such as expression, environment, etc.
There are 5,000 labels in all. FaceTracer can be used
as simply a dataset of real-world images with face
detections and fiducials; or by researchers wanting to
train their own attribute classifiers; or for any other
non-commercial purpose.

The dataset is publicly available as a set of face
URLs and accompanying data at http://faceserv.cs.
columbia.edu/databases/facetracer/

3.4 PubFig Dataset
The PubFig dataset is a more direct complement to
the LFW dataset [25]. It consists of 59, 476 images
of 200 public figures. The larger number of images
per person (as compared to LFW) allows one to
construct subsets of the data across different poses,
lighting conditions, and expressions for further study.
In addition, this dataset is well-suited for recognition
experiments.
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Fig. 5. Overview of attribute training architecture. Given a set of labeled positive and negative training images, low-level
feature vectors are extracted using a large pool of low-level feature options. (Each feature option consists of a region chosen
from Fig. 6 and a feature type chosen from Table 1.) An automatic iterative selection process then picks the best set of
features for correctly classifying the input data. The outputs are the selected features and the trained attribute classifier.

PubFig is divided into a development set of 60
people, on which we trained our simile classifiers
(described in Sec. 4.4), and an evaluation set of 140
people. The evaluation set was used to create a face
verification benchmark similar to that from LFW.
All the data (again, as URLs to images) and eval-

uation benchmarks from PubFig are publicly avail-
able for non-commercial use at http://faceserv.cs.
columbia.edu/databases/pubfig/

4 LEARNING VISUAL ATTRIBUTES
Given a particular describable visual attribute – say
“gender” – how can one train a classifier for the
attribute? Let us answer this question by first for-
malizing our notion of attributes. Attributes can be
thought of as functions ai that map images I to real
values ai. Evaluating the function can be thought of
as measuring the attribute. Large positive values of ai

indicate the presence or strength of the ith attribute,
while negative values indicate its absence.
Consider the attribute “gender.” If images I1 and I2

are of males and image J is of a female, we would
like our gender function ag to map these input images
onto the real line, with males assigned positive values
and females negative values. Notice that images I1

and I2 could differ in many respects – lighting, pose,
age, expression, and other attributes – and yet the
gender classifier should still mark them as male. We
would like these classifiers to measure the degree of
the attribute as well. For instance, if I1 were an image
of Clint Eastwood and I2 were an image of Orlando
Bloom, we would want ag(I1) > ag(I2). Similarly, the
classifier for a different attribute – age, for example –
should give reliable results despite changes in gender.
Similes are another class of describable visual traits.

Simile functions describe the similarity of a face re-
gion between two different individuals. For example,
we could say a person has “eyes like Penelope Cruz’s”
or a “mouth like Angelina Jolie’s.” We can formalize
these two simile functions as scruzeyes

and sjoliemouth
,

and someone who shared Cruz’s eyes but not Jolie’s
mouth would thus have a positive value for the
former and a negative value for the latter.

Learning an attribute or simile classifier consists of
fitting a function to a set of labeled training data. If
the training labels are ±1, this can be seen as fitting a
classification function; real-valued labels imply regres-
sion; and if only ordering constraints are given, it be-
comes a problem of learning ranking functions. In all
cases, regularization is important because the inputs,
low-level image features, are very high-dimensional
with complex variation, and there is always limited
training data. This regularization could be biased by
the distribution of features actually observed, which
can be acquired from both labeled and unlabeled data.
In this work, we consider mainly binary classifiers;
regressors would likely behave very similarly, though
possibly with greater accuracy.

4.1 Training Architecture
An overview of the attribute training architecture is
shown in Fig. 5. The key idea is to leverage the many
efficient and effective low-level features that have
been developed by the computer vision community,
choosing amongst a large set of them to find the ones
suited for learning a particular attribute. This process
should ideally be done in a generic, application- and
domain-independent way, but with the ability to take
advantage of domain-specific knowledge where avail-
able.

For the domain of faces, this knowledge consists
of an affine alignment procedure and the use of low-
level features which have proven to be very useful
in a number of leading vision techniques, especially
for faces. The alignment takes advantage of the fact
that all faces have common structure – i.e., two eyes,
a nose, a mouth, etc.– and that we have fiducial point
detections available from a face detector [37]. The low-
level features are described in the next section.

4.2 Low-Level Features
As described in Sec. 3.1, face images are first aligned
using an affine transformation. A set of k low-level
feature extractors fj are applied to an aligned input
image I to form a feature set F(I):

F(I) = {f1(I), · · · , fk(I)} . (1)



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 8

(a) (b)
Fig. 6. The face regions used for automatic feature selection
are shown here on an affine-aligned face image. There is (a)
one region for the whole face, and (b) nine regions corre-
sponding to functional parts of the face, such as the mouth,
eyes, nose, etc. Regions are large enough to contain the face
part across changes in pose, small errors in alignment, and
differences between individuals. The regions are manually
defined, once, in the affine-aligned coordinate system, and
can then be used automatically for all aligned input faces.

We describe each extractor fi in terms of four choices:
the region of the face to extract features from, the type
of pixel data to use, the kind of normalization to apply
to the data, and finally, the level of aggregation to use.
The complete set of our 10 regions are shown in

Fig. 6. The regions correspond to functional parts of a
face, such as the nose, mouth, etc., similar to those
defined in the work on modular eigenspaces [39].
Regions are defined manually in the affine-aligned
coordinate system. This only has to be done once,
after which all aligned faces can use the same region
definitions. Our coarse division of the face allows us
to take advantage of the common geometry shared
by faces, while allowing for differences between indi-
vidual faces as well as robustness to small errors in
alignment. Prior to feature extraction, we mask out the
background to avoid contaminating the classifiers. We
also use the detected yaw angles of the face to first
flip images so that they always face left. This small
tweak makes the classifier’s job slightly easier, as the
“good” side of the face is always on the same half of
the image.
From each region, one can extract different types

of information, as categorized in Table 1. The types
of pixel data to extract include various color spaces
(RGB, HSV) as well as edge magnitudes and orien-
tations. To remove lighting effects and better gen-
eralize across a limited number of training images,
one can optionally normalize the extracted values.
One method for normalization is mean normalization,
x̂ = x

µ
, which removes illumination gains. Another

option is energy normalization, x̂ = x−µ
σ

, which
removes gains as well as offsets. (In these equations,
x refers to the input value, µ and σ are the mean
and standard deviation of all the x values within the
region, and x̂ refers to the normalized output value.)

TABLE 1
Feature type options

Pixel Value Types Normalizations Aggregation

RGB None None
HSV Mean Normalization Histogram

Image Intensity Energy Normalization Mean/Variance
Edge Magnitude
Edge Orientation

Finally, one can aggregate information over the region
rather than simply concatenating all values. This can
be as simple as using only the mean and variance, or
include more information by computing a histogram
of values over the region. A complete feature type is
created by choosing a region from Fig. 6 and one entry
from each column of Table 1.

4.3 Attribute Classifiers
In creating a classifier for a particular attribute, we
could simply extract all types of low-level features
from the whole face, and let a classifier figure out
which are important for the task and which are not.
This, however, puts too great a burden on the clas-
sifier, confusing it with non-discriminative features.
Instead, we design a selection procedure which auto-
matically chooses the best features from a rich set of
feature options. The chosen features are used to train
the final attribute or simile classifier.

Attribute classifiers Ci are built using a supervised
learning approach. Training requires a set of labeled
positive and negative images for each attribute, ex-
amples of which are shown in Fig. 7. The goal is to
build a classifier that best classifies this training data
by choosing an appropriate subset of the feature set
F(I) described in the previous section. We do this
iteratively using forward feature selection. In each
iteration, we first train several individual classifiers
on the current set of features in the output set con-
catenated with a single region-feature combination.
Each classifier’s performance is evaluated using cross-
validation. The features used in the classifier with
the highest cross-validation accuracy are added to
the output set. We continue adding features until the
accuracy stops improving, up to a maximum of 6 low-
level features. For computational reasons, we drop
the lowest-scoring 70% of features at each round, but
never dropping below 10 features.

Our classifiers are Support Vector Machines
(SVMs) [9] with RBF kernels, trained using libsvm [6].
For each classifier, we use between 500 to 2000 pos-
itive and negative examples each, and perform a
grid search over the C and γ parameters. The entire
process is fully automatic, and takes a few hours of
computation time per attribute trained, using a small
grid of roughly 20 Intel Xeon processors, running
at 3.0 Ghz each. We note that our procedure is by
no means optimal; picking optimal features for non-
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TABLE 2
Comparison of attribute classification performance

Classification Method
Gender

Error Rate
Smiling

Error Rate
Attribute Classifiers 8.62% 4.67%
Pixel comp. feats. [1] 13.13% 7.41%
Haar-like feats. [47] 12.88% 6.40%
Full-face SVM [33] 9.52% 13.54%

Fig. 7. Training data for the attribute classifiers consists of
face images that match the given attribute label (positive
examples) and those that don’t (negative examples). Shown
here are a few of the training images used for four different
attributes. Final classifier accuracies for all 65 attributes are
shown in Table 3.

linear classifiers is still an open problem in machine
learning. Nevertheless, we obtain excellent results in
practice.
While we have designed our classifier architecture

to be flexible enough to handle a large variety of
attributes, it is important to ensure that we have
not sacrificed accuracy in the process. We therefore
compare our approach to three previous state-of-the-
art methods for attribute classification: full-face SVMs
using brightness normalized pixel values [33], Ad-
aboost using Haar-like features [47], and Adaboost
using pixel comparison features [1]. Since these works
have mostly focused on gender classification, we use
that attribute as the first testing criteria. In addition,
we also test performance on the “smiling” attribute –
which we expect to be localizable to a small region of
the face: the mouth.
Results are shown in Table 2. Our method performs

the best in all cases (in some cases significantly so).
This highlights the power of doing feature selection;
in particular, we see that the full-face SVM method,
while performing reasonably well on gender, did
much worse on a localized attribute like smiling. Note
that for the purposes of this test, we limited images
to mostly frontal faces.
Using the Columbia face database and the training

procedure just described, we trained a total of 65
attribute classifiers. Their accuracies on held out data

TABLE 3
Accuracies of our 65 attribute classifiers

Attribute Accuracy Attribute Accuracy
Asian 92.3% Mouth Closed 89.3%
Attractive 81.1% Mouth Open 85.1%
Baby 90.5% Mustache 91.9%
Bags Under Eyes 86.2% No Beard 89.5%
Bald 83.2% No Eyewear 93.5%
Bangs 88.7% Nose Shape 86.9%
Black 88.7% Nose Size 87.5%
Black Hair 80.3% Nose-Mouth Lines 93.1%
Blocked Forehead 79.1% Obscured Forehead 77.0%
Blond Hair 78.0% Oval Face 70.3%
Blurry 92.1% Pale Skin 89.4%
Brown Hair 72.4% Posed Photo 69.7%
Child 83.6% Receding Hairline 84.2%
Chubby 77.2% Rosy Cheeks 85.8%
Color Photo 95.5% Round Face 74.3%
Curly Hair 68.9% Round Jaw 67.0%
Double Chin 77.7% Senior 88.7%
Environment 84.8% Shiny Skin 84.7%
Eye Width 90.0% Sideburns 71.1%
Eyebrow Shape 80.9% Smiling 95.3%
Eyebrow Size 93.4% Soft Lighting 67.8%
Eyeglasses 91.6% Square Face 81.2%
Eyes Open 92.5% Straight Hair 76.8%
Flash Lighting 72.3% Sunglasses 94.9%
Frowning 95.5% Teeth Not Visible 91.6%
Gaping 89.6% Teeth Visible 91.6%
Goatee 80.3% Visible Forehead 89.4%
Gray Hair 87.2% Wavy Hair 64.5%
Harsh Lighting 78.7% Wearing Hat 86.0%
High Cheekbones 84.7% Wearing Lipstick 86.8%
Indian 86.5% White 91.5%
Male 85.2% Youth 85.8%
Middle-Aged 78.4%

are shown in Table 3. Typical accuracies range from
80% to 90%.

4.4 Simile Classifiers
Simile classifiers measure the similarity of part of a
person’s face to the same part on a set of reference
people. We use the 60 individuals from the develop-

Fig. 8. Each simile classifier is trained using several images
of a specific reference person, limited to a small face region
such as the eyes, nose, or mouth. We show here three
positive and three negative examples, for four regions on two
of the reference people used to train these classifiers.
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Fig. 9. The face verification pipeline. A pair of input images are run through a face and fiducial detector [37], and the fiducials
are then used to align both faces to a common coordinate system. The aligned face images are fed to each of our attribute
and simile classifiers individually to obtain a set of attribute values. Finally, these values are compared using a verification
classifier to make the output determination, which is returned along with the distance to the decision boundary.

ment set of PubFig as the reference people. The left
part of Fig. 8 shows examples of regions selected from
reference persons R1 (top) and R2 (bottom) as positive
examples. On the right are negative examples, which
are simply the same region extracted from other indi-
viduals’ images.
We emphasize two points. First, the individuals

chosen as reference people do not appear in LFW or
other benchmarks on which we produce results. Sec-
ond, we train simile classifiers to recognize similarity
to part of a reference person’s face in many images,
not similarity to a single image. The use of face parts
increases the number of classifiers, but makes each
one easier to learn, while the use of several input
images allows for much better generalizability.
For each reference person, we train support vector

machines to distinguish a region (e.g., eyebrows, eyes,
nose, mouth) on their face from the same region on
other faces. We choose eight regions and six feature
types from the set of possible features described in
Sec. 4.2 and train classifiers for each simile using the
training procedure described in the previous section.
Each simile classifier is trained using at most 600
positive samples (face images) of the reference person,
and at most 10 times as many negative samples,
randomly chosen from images of other people in the
training set.

5 FACE VERIFICATION
Existing methods for face verification – “are these two
faces of the same person” – often make mistakes that
would seem to be avoidable: men being confused for
women, young people for old, asians for caucasians,
etc. On the other hand, small changes in pose, ex-
pression, or lighting can cause two otherwise similar
images of the same person to be misclassified by an

algorithm as different. Based on this observation, we
hypothesized that the attribute and simile classifiers
could avoid such mistakes.

5.1 Training a Verification Classifier
Fig. 9 illustrates how attribute-based face verification
is performed on a new pair of input images. In order
to make a decision about whether two face images
I1 and I2 show the same person, one can train a
verification classifier V to compare attribute vectors
C(I1) and C(I2). These vectors are constructed by
concatenating the result of n different attribute and/or
simile classifiers.

To build a final verification classifier, let us make
some observations about the particular form of our
classifiers:

1) Values Ci(I1) and Ci(I2) from the ith classifier
should be similar if the images are of the same
individual, and different otherwise.

2) Classifier values are raw outputs of binary clas-
sifiers (in the range [−1, 1]), where the objective
function is trying to separate examples around
0. Thus, the signs of values should be important.

3) The particular choice of classifier used, SVMs,
optimize only for separating data at the sep-
aration boundary, and so differences in values
close to 0 are more important than differences
between those with greater absolute values, e.g.,
the difference between -0.1 and 0.1 matters more
than that between 0.8 and 1.0, even though they
both have a difference of 0.2.

Let ai = Ci(I1) and bi = Ci(I2) be the outputs of the
ith trait classifier for each face (1 ≤ i ≤ n). One would
like to combine these values in such a way that our
second-stage verification classifier V can make sense
of the data. This means creating values that are large
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(and positive) when the two inputs are of the same
individual, and negative otherwise.
Based on the above 3 observations, let us con-

struct this combination. From observation (1), one can
see that using the absolute difference |ai − bi| will
yield the desired outputs. However, based on the 3rd
observation, this will unduly punish differences at
high magnitudes. This effect can be ameliorated by
multiplying with a Gaussian of variance 1 centered
at 0: g

(

1

2
(ai + bi)

)

· |ai − bi|, where g is the given
Gaussian. Finally, using the 2nd observation, one can
add another term to the combination – the product:
ai · bi.
Putting both terms together yields the tuple pi:

pi =

〈

g

(

1

2
(ai + bi)

)

· |ai − bi|, ai · bi

〉

(2)

(We found that changing the exact nature of this tuple
– e.g., by using either the difference or the product, or
not applying the gaussian weighting – did not affect
accuracy by more than 1%.)
The concatenation of these tuples for all n at-

tribute/simile classifier outputs forms the input to the
verification classifier V :

v(I1, I2) = V (〈p1, . . . , pn〉) (3)

Training V requires pairs of positive examples (two
images of the same person) and negative examples
(images of two different people). In our experiments,
we use an SVM with an RBF kernel for V , trained
using libsvm [6] with default parameters for C and γ.

5.2 Experimental Setup
We explore face verification performance on the La-
beled Faces in the Wild (LFW) benchmark [25] and
on our PubFig benchmark. For each computational
experiment, a set of pairs of face images is presented
for training, and a second set of pairs is presented for
testing. In all experiments, not only are the images
in the training and test sets disjoint, but there is also
no overlap in the individuals used in the two sets.
In addition, the individuals and images used to train
the attribute and simile classifiers are disjoint from the
testing sets.

5.3 Attribute Classifier Results on LFW
The LFW dataset consists of 13,233 images of
5,749 people, organized into 2 “views”: a development
set of 2,200 pairs for training and 1,000 pairs for
testing, on which to build models and choose features;
and a 10-fold cross-validation set of 6,000 pairs, on
which to evaluate final performance. We used View 1
for high-level model selection (e.g., representation for
the final classifier V ) and evaluated our performance
on each of the folds in View 2 using the “image
restricted configuration,” as described in the LFW
paper [25].

Fig. 10. Face verification performance on LFW of our at-
tribute classifiers, simile classifiers, and a hybrid of the two
are shown in solid red, blue, and green, respectively. Dashed
lines are existing methods. Our highest accuracy is 85.29%,
which is comparable to the current state-of-the-art accuracy
of 86.83% [55]. The fact that the hybrid performance is better
than either attribute or similes alone suggests that the two
capture different kinds of information.

A verification classifier V is trained using nine
folds from View 2 of LFW and then evaluated on the
remaining fold, cycling through all ten folds. Receiver
Operating Characteristic (ROC) curves are obtained
by saving the classifier outputs for each test pair in
all ten folds and then sliding a threshold over all out-
put values to obtain different false positive/detection
rates. An overall accuracy is obtained by using only
the signs of the outputs (e.g., thresholding at 0) and
counting the number of errors in classification. The
standard deviation for the accuracy is obtained by
looking at the accuracies for each fold individually.

Fig. 10 shows results on LFW for our attribute
classifiers (red line), simile classifiers (blue line), and
a hybrid of the two (green line), along with several
previous methods (dotted lines) [24], [44], [50], [51],
[54], [55]. The accuracies for each of our methods are
83.62%± 1.58%, 84.14%± 1.31%, and 85.29%± 1.23%,
respectively.2 Our highest accuracy of 85.29% is com-
parable to the 86.83% accuracy of the current state-of-
the-art method [55] on LFW.

5.4 Human Attribute Labels on LFW
Although our methods already achieve close to the
current best performance on LFW so far, it is inter-

2. Our face detector [37] was unable to detect one or more faces
in 53 of the 6,000 total pairs. For these, we assumed average
performance.
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esting to consider how well attribute classifiers could
potentially do. There are several reasons to believe
that the current results are only first steps towards
this ultimate goal:

• We have trained only 65 attribute classifiers so
far. Adding more attributes, such as the presence
and location of highly discriminative facial fea-
tures including moles, scars, and tattoos, should
greatly improve performance.

• Of the 65 attributes, many are not discriminative
for verification. For example, facial expression,
scene illumination, and image quality are all un-
likely to aid in verification. There is also a severe
imbalance in LFW of many basic attributes such
as gender and age, which reduces the expected
benefit of using these attributes for verification.

• The attribute functions were trained as binary
classifiers rather than as continuous regressors.
While we use the distance to the separation-
boundary as a measure of degree of the attribute,
using regression may improve results.

With the hope of exploring what might be possi-
ble using attribute, we performed an experiment in
which our automatic attribute labeling process was
replaced by human labels, keeping the verification
process identical. MTurk workers were asked to label
attributes for all faces in the LFW View 2 benchmark
set. We averaged seven user-responses per image to
obtain smoothed estimates of the attribute values.
Fig. 11 shows a comparison of face verification per-

formance on LFW using either these human attribute
labels (blue line) or our automatically-computed clas-
sifier outputs (red line). In both cases, the labels
are fed to the verification classifier V and training
proceeds identically, as described earlier. The same set
of attributes were used for each corresponding point
on the graphs. Verification results using the human at-
tribute labels reach 91.86% accuracy with 18 attributes,
significantly outperforming our computed labels at
81.57% for the same 18 attributes. Moreover, the drop
in error rates from computational to human labels
is actually increasing with more attributes, suggesting
that adding more attributes could greatly improve
accuracies even further.

5.5 Human Verification on LFW
The high accuracies obtained in the previous section
lead to a natural question: How well do people
perform on the verification task itself? While many
algorithms for automatic face verification have been
designed and evaluated on LFW, there are no pub-
lished results about how well people perform on
this benchmark. Furthermore, it is unknown what
characteristics of the dataset might make it easier or
harder to perform the verification task. To this end, we
conducted several experiments on human verification.

Fig. 11. Comparison of face verification performance on LFW
using human attribute labels (blue line) vs. automatically-
computated classifier outputs (red line). Verification using
human labels consistently outperforms that using classifier
outputs. With 18 attributes, human attribute labels reach
91.86% accuracy compared to only 81.57% using classifier
outputs. Training better attribute classifiers (or regressors)
could thus greatly improve our verification performance.

We followed the procedure of [38] to obtain this
data, using Amazon Mechanical Turk. MTurk users
were shown pairs of faces from the LFW View 2
benchmark set and asked to mark whether the images
showed the same person or not. This was done on
a scale of -1 to +1, where the sign of the score was
their decision (positive if the pair was of the same
individual, negative otherwise), and the magnitude
was their confidence in their response. The responses
of 10 different users were averaged per face pair to get
a score for that pair. (Thus, for the 6,000 image pairs
in LFW, we gathered 60,000 data points from users for
each of the three tests described below, for a total of
240,000 user inputs.) An ROC curve was created by
sliding the confidence threshold from -1 to 1, counting
scores less than the threshold as “different” and those
above as “same.”

We first performed a test using the original LFW
images. The results are shown in red in Fig. 12. At
99.20% accuracy, people are essentially perfect on this
task. We now look at tougher variants of this test.

The first variant is to crop the images tightly around
the face. We do this by blacking out most of the image,
leaving only the face visible (including at least the
eyes, nose and mouth, and possibly parts of the hair,
ears, and neck). This test measures how much people
are helped by the context (sports shot, interview,
press conference, etc.), background (some images of
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Fig. 12. Face verification performance on LFW by humans is
almost perfect (99.20%) when people are shown the original
images (red line). Showing a tighter cropped version of the
images (blue line) drops their accuracy to 97.53%, due to the
lack of context available. The green line shows that even with
an inverse crop, i.e., when only the context is shown, humans
still perform amazingly well, at 94.27%. This highlights the
strong context cues available on the LFW dataset. All of
our methods mask out the background to avoid using this
information.

individuals were taken with the same background),
and hair (although sometimes it is partially visible).
The results are shown in blue in Fig. 12. Performance
drops quite a bit, to 97.53% – a tripling of the error
rate.
To confirm that the region outside of the face is

indeed helping people with identification, we ran a
third test where the mask was inverted – i.e., we
blacked out the face but showed the remaining part of
the image. Astonishingly, people still achieve 94.27%
accuracy, as shown by the green line in Fig. 12.
These results suggest that automatic face verification
algorithms should avoid regions outside of the face, as
they could artificially boost accuracy in a manner not
applicable on real data. (In all experiments involving
our attribute and simile classifiers, we masked out the
background.)

5.6 Attribute Classifier Results on PubFig
The evaluation benchmark for PubFig is similar to
the LFW benchmark, albeit larger. Face verification is
performed on 20,000 pairs of images of 140 people,
divided into 10 cross-validation folds with mutually
disjoint sets of 14 people each. These people are
separate from the 60 people in the development set
of PubFig, which were used for training the simile
classifiers. The larger size and more varied image

Fig. 13. Face verification results on the PubFig evaluation
benchmark using our attribute classifiers. Our accuracy is
77.78% on this benchmark, which consists of 20,000 face
pairs partitioned into 10 folds for cross-validation. Our lower
performance on this test as compared to LFW suggests that
this is a more challenging benchmark.

sources used to gather the PubFig dataset make it a
potentially more challenging benchmark than LFW,
a hypothesis supported by our lower performance on
this test, displayed in Fig. 13 – our attribute classifiers
had an accuracy of 77.78%.

All the data and evaluation benchmarks from Pub-
Fig are publicly available for non-commercial use at
http://faceserv.cs.columbia.edu/databases/pubfig/

6 FACE SEARCH
Image search engines currently are completely depen-
dent on textual metadata. This data can be in the
form of filenames, manual annotations, or surround-
ing text. However, for the vast majority of images
on the internet (and in peoples’ private collections),
this data is often ambiguous, incorrect, or simply
not present. This presents a great opportunity to
use attribute classifiers on images with faces, thereby
making them searchable. To facilitate fast searches on
a large collection of images, all images are labeled
in an offline process using attribute classifiers. The
resulting attribute labels are stored for fast online
searches using the FaceTracer engine [27].

For a search engine, the design of the user interface
is one of the most important aspects for enabling
users to easily find what they are looking for. We use
simple text-based queries, since these are both familiar
and accessible to most internet users, and correspond
well to describable visual attributes. Search queries
are mapped onto attribute labels using a dictionary of
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(a) Results for “dark-haired people with sunglasses” (b) Personalized results for “children outside”
Fig. 14. Results of queries (a) “dark-haired people with sunglasses” and (b) “children outside,” using our attribute-based
face search engine. In (a), search results are shown in the left panel, while the right panel shows a preview of the original
image for the selected face. Clicking the image takes the user to the image’s original webpage. (b) shows search results on
a personalized dataset, displaying the results as thumbnails of the original images. Note that these results were correctly
classified as being “outside” using only the cropped face images, showing that face images often contain enough information
to describe properties of the image not directly related to faces.

terms. Users can see the list of attributes supported
by the system on the search page, allowing them
to construct searches without having to guess what
kinds of queries are allowed. This approach is simple,
flexible, and yields excellent results in practice. Fur-
thermore, it is easy to add new phrases and attributes
to the dictionary, or maintain separate dictionaries for
searches in different languages.

Search results are ranked by confidence, so that
the most relevant images are shown first. We use the
computed distance to the classifier decision boundary
as a measure of the confidence. For searches with
multiple query terms, we combine the confidences of
different attribute labels such that the final ranking
shows images in decreasing order of relevance to all
search terms. To prevent high confidences for one
attribute from dominating the search results, we first
convert the confidences into probabilities by fitting
a held-out set of positive and negative examples to
gaussian distributions, and then use the product of
the probabilities as the sort criteria. This ensures that
the images with high confidences for all attributes are
shown first.

Example queries on our search engine are shown in
Figs. 14a and 14b. The returned results are all highly
relevant. Fig. 14b additionally demonstrates two other
interesting things. First, it was run on a personalized
dataset of images, showing that this method can be
applied to specialized image collections as well as
general ones. Second, it shows that we can learn use-
ful things about an image using just the appearance of
the faces within it – in this case determining whether
the image was taken indoors or outdoors.

This attribute-based search engine can be used in

many other applications, replacing or augmenting
existing tools. In law enforcement, eyewitnesses to
crimes could use this system to quickly narrow a
list of possible suspects and then identify the actual
criminal from the reduced list, saving time and in-
creasing the chances of finding the right person. On
the internet, our face search engine is a perfect match
for social networking websites such as Facebook and
Myspace, which contain large numbers of images with
people. Additionally, the community aspect of these
websites would allow for collaborative creation of
new attributes. Finally, users can utilize our system to
more easily organize and manage their own personal
photo collections. For example, searches for blurry or
other poor-quality images can be used to find and
remove all such images from the collection.

7 CONCLUSIONS AND FUTURE DIRECTIONS
In this work, we have shown how to automatically
train classifiers for describable aspects of visual ap-
pearance – attributes and similes. These classifiers
are learned using large collections of labeled images
obtained from the internet. We demonstrated the use
of these describable attributes for performing face ver-
ification and image search. We showed performance
comparable to or better than the state-of-the-art in
all aspects of the work: attribute classification, face
verification, and search (qualitatively). We have also
made available two large and complementary datasets
for use by the community to make further progress
along these lines.

These seem to be promising first steps in a new
direction, and there are many avenues to explore. The
experiments with human attribute labeling in Sec. 5.4
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suggest that adding more attributes and improving
the attribute training process could yield great ben-
efits for face verification. Another open question is
how attributes can be applied to domains other than
faces. It seems that for reliable and accurate attribute
training, analogues to the detection and alignment
process must be found.

7.1 Dynamic Selection of Attributes to Label
The set of attributes used in this work were chosen
in an ad-hoc way; how to select them dynamically
in a more principled manner is an interesting topic
to consider. In particular, a system with a user-in-
the-loop could be used to suggest new attributes.
Thanks to Amazon Mechanical Turk, such a system
would be easy to setup and could operate almost fully
automatically.
The idea is to first evaluate a current set of attribute

classifiers on a verification dataset and then look at the
mistakes made by the algorithm. Presumably, these
mistakes would occur on face pairs which could not
be sufficiently distinguished using the current set of
attributes. Borrowing terminology from color theory,
we term these face pairs “metamers.” The metamers
could be shown to users on MTurk, asking them
to suggest new attributes which could disambiguate
such pairs. By doing this over a large enough number
of images and users, one could grow an existing set
of attributes in a maximally-efficient way. Measures
based on mutual information and information gain
could be used in association with this metamer dis-
ambiguation strategy to ensure that the best attributes
were picked.

ACKNOWLEDGMENTS
The authors would like to thank Pietro Perona for
suggesting the human attribute labels experiment de-
scribed in Sec. 5.4. This work was supported in part
by NSF award IIS-03-25867 and ONR award N00014-
08-1-0638.

REFERENCES
[1] S. Baluja and H. Rowley, “Boosting sex identification perfor-

mance,” IJCV, 2007.
[2] P. Belhumeur, J. Hespanha, and D. Kriegman, “Eigenfaces vs.

Fisherfaces: Recognition using class specific linear projection,”
ECCV, pp. 45–58, 1996.

[3] T. L. Berg, A. C. Berg, J. Edwards, M. Maire, R. White, Y.-W.
Teh, E. Learned-Miller, and D. Forsyth., “Names and faces in
the news,” CVPR, 2004.

[4] V. Blanz, S. Romdhani, and T. Vetter, “Face identification
across different poses and illuminations with a 3d morphable
model,” FGR, 2002.

[5] C. D. Castillo and D. W. Jacobs, “Using stereo matching for
2-d face recognition across pose,” CVPR, 2007.

[6] C.-C. Chang and C.-J. Lin, LIBSVM: a library for support vector
machines, 2001, http://www.csie.ntu.edu.tw/∼cjlin/libsvm.

[7] H. Chen, P. Belhumeur, and D. Jacobs, “In search of illumina-
tion invariants,” CVPR, 2000.

[8] T. Cootes, K. Walker, and C. Taylor, “View-based active ap-
pearance models,” FGR, 2000.

[9] C. Cortes and V. Vapnik, “Support-vector networks,” Machine
Learning, vol. 20, no. 3, 1995.

[10] G. W. Cottrell and J. Metcalfe, “Empath: face, emotion, and
gender recognition using holons,” in NIPS, 1990, pp. 564–571.

[11] N. Dalal and B. Triggs, “Histograms of oriented gradients for
human detection,” in IEEE Conference on Computer Vision and
Pattern Recognition, vol. 1, 2005, pp. 886–893.

[12] R. Datta, J. Li, and J. Z. Wang, “Content-based image retrieval:
Approaches and trends of the new age,” Multimedia Informa-
tion Retrieval, pp. 253–262, 2005.

[13] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei,
“ImageNet: A Large-Scale Hierarchical Image Database,” in
CVPR, 2009.

[14] M. Everingham, J. Sivic, and A. Zisserman, “Hello! my name
is... Buffy – automatic naming of characters in TV video,”
BMVC, 2006.

[15] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn,
and A. Zisserman, “The PASCAL Visual Object Classes
Challenge 2008 (VOC2008) Results,” http://www.pascal-
network.org/challenges/VOC/voc2008/workshop/index.html.

[16] A. Farhadi, I. Endres, D. Hoiem, and D. Forsyth, “Describing
objects by their attributes,” in CVPR, 2009.

[17] A. Ferencz, E. Learned-Miller, and J. Malik, “Learning to locate
informative features for visual identification,” IJCV Special
Issue on Learning and Vision, 2007.

[18] V. Ferrari and A. Zisserman, “Learning visual attributes,” in
Advances in Neural Information Processing Systems, Dec. 2007.

[19] Y. Freund and R. Shapire, “Experiments with a new boosting
algorithm,” ICML, 1996.

[20] A. S. Georghiades, P. N. Belhumeur, and D. J. Kriegman, “From
few to many: Illumination cone models for face recognition
under variable lighting and pose,” PAMI, vol. 23, no. 6, pp.
643–660, 2001.

[21] B. A. Golomb, D. T. Lawrence, and T. J. Sejnowski, “SexNet:
A neural network identifies sex from human faces,” in NIPS,
1990, pp. 572–577.

[22] R. Gross, J. Shi, and J. Cohn, “Quo vadis face recognition?” in
Workshop on Empirical Evaluation Methods in Computer Vision,
December 2001.

[23] G. Huang, V. Jain, and E. Learned-Miller, “Unsupervised joint
alignment of complex images,” ICCV, 2007.

[24] G. Huang, M. Jones, and E. Learned-Miller, “LFW results using
a combined Nowak plus MERL recognizer,” in Real-Life Images
workshop at ECCV, 2008.

[25] G. Huang, M. Ramesh, T. Berg, and E. Learned-Miller, “La-
beled Faces in the Wild: A database for studying face recogni-
tion in unconstrained environments,” UMass Amherst Technical
Report 07-49, October 2007.

[26] M. Kirby and L. Sirovich, “Application of the karhunen-loeve
procedure for the characterization of human faces,” Pattern
Analysis and Machine Intelligence, IEEE Transactions on, vol. 12,
no. 1, pp. 103 –108, jan 1990.

[27] N. Kumar, P. N. Belhumeur, and S. K. Nayar, “FaceTracer:
A search engine for large collections of images with faces,”
ECCV, 2008.

[28] N. Kumar, A. C. Berg, P. N. Belhumeur, and S. K. Nayar,
“Attribute and simile classifiers for face verification,” ICCV,
2009.

[29] C. Lampert, H. Nickisch, and S. Harmeling, “Learning to de-
tect unseen object classes by between-class attribute transfer,”
in CVPR, 2009.

[30] M. S. Lew, N. Sebe, C. Djeraba, and R. Jain, “Content-based
multimedia information retrieval: State of the art and chal-
lenges,” ACM Trans. Multimedia Comput. Commun. Appl., vol. 2,
no. 1, pp. 1–19, 2006.

[31] H. Ling, S. Soatto, N. Ramanathan, and D. Jacobs, “A study
of face recognition as people age,” ICCV, 2007.

[32] D. Lowe, “Distinctive image features from scale-invariant
keypoints,” IJCV, 2003.

[33] B. Moghaddam and M.-H. Yang, “Learning gender with sup-
port faces,” TPAMI, vol. 24, no. 5, pp. 707–711, 2002.

[34] D. Nister and H. Stewenius, “Scalable recognition with a
vocabulary tree,” in CVPR, 2006, pp. 2161–2168.

[35] E. Nowak and F. Jurie, “Learning visual similarity measures
for comparing never seen objects,” CVPR, 2007.



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 16

[36] E. Nowak, F. Jurie, and B. Triggs, “Sampling strategies for bag-
of-features image classification,” in In Proc. ECCV. Springer,
2006, pp. 490–503.

[37] Omron, “OKAO vision,” http://www.omron.com/r d/
coretech/vision/okao.html, 2009.

[38] A. O’Toole, P. Phillips, F. Jiang, J. Ayyad, N. Penard, and
H. Abdi, “Face recognition algorithms surpass humans match-
ing faces over changes in illumination,” PAMI, vol. 29, no. 9,
pp. 1642–1646, Sept. 2007.

[39] A. Pentland, B. Moghaddam, and T. Starner, “View-based and
modular eigenspaces for face recognition,” CVPR, pp. 84–91,
1994.

[40] A. Pentland, R. Picard, and S. Sclaroff, “Photobook: Content-
based manipulation of image databases,” IJCV, pp. 233–254,
1996.

[41] P. Phillips, H. Moon, S. Rizvi, and P. Rauss, “The FERET eval-
uation methodology for face-recognition algorithms,” PAMI,
vol. 22, no. 10, pp. 1090–1104, 2000.

[42] P. J. Phillips, P. J. Flynn, T. Scruggs, K. W. Bowyer, J. Chang,
K. Hoffman, J. Marques, J. Min, and W. Worek, “Overview
of the face recognition grand challenge,” CVPR, pp. 947–954,
2005.

[43] P. Phillips, P. Flynn, T. Scruggs, K. Bowyer, and W. Worek,
“Preliminary face recognition grand challenge results,” FGR,
pp. 15–24, 2006.

[44] N. Pinto, J. J. DiCarlo, and D. D. Cox, “How far can you
get with a modern face recognition test set using only simple
features?” in Computer Vision and Pattern Recognition, 2009.

[45] B. Russell, A. Torralba, and K. Murphy, “LabelMe: a database
and web-based tool for image annotation,” IJCV, vol. 77, no.
1-3, pp. 157–173, 2008.

[46] F. Samaria and A. Harter, “Parameterisation of a stochastic
model for human face identification,” Workshop on Applications
of Computer Vision, 1994.

[47] G. Shakhnarovich, P. Viola, and B. Moghaddam, “A unified
learning framework for real time face detection and classifica-
tion,” FGR, 2002.

[48] T. Sim, S. Baker, and M. Bsat, “The CMU pose, illumination,
and expression (PIE) database,” ICAFGR, pp. 46–51, 2002.

[49] J. Sivic and A. Zisserman, “Video Google: A text retrieval
approach to object matching in videos,” in Proceedings of the
International Conference on Computer Vision, vol. 2, Oct. 2003,
pp. 1470–1477.

[50] Y. Taigman, L. Wolf, and T. Hassner, “Multiple one-shots for
utilizing class label information,” in The British Machine Vision
Conference (BMVC), 2009.

[51] M. Turk and A. Pentland, “Face recognition using eigenfaces,”
CVPR, 1991.

[52] P. Viola and M. Jones, “Rapid object detection using a boosted
cascade of simple features,” CVPR, 2001.

[53] L. Wiskott, J.-M. Fellous, N. Krger, and C. von der Malsburg,
“Face recognition by elastic bunch graph matching,” IEEE
Trans. Pattern Analysis and Machine Intelligence, vol. 19, pp. 775–
779, 1997.

[54] L. Wolf, T. Hassner, and Y. Taigman, “Descriptor based meth-
ods in the wild,” in Real-Life Images workshop at ECCV, 2008.

[55] ——, “Similarity scores based on background samples,” in
Asian Conference on Computer Vision, 2009.

[56] W. Zhao, R. Chellappa, P. J. Phillips, and A. Rosenfeld, “Face
recognition: A literature survey,” ACM Comput. Surv., vol. 35,
no. 4, pp. 399–458, 2003.

Neeraj Kumar received BSc degrees in
Computer Science and Aeronautical Engi-
neering from the Georgia Institute of Tech-
nology in 2005 (both with highest honors).
He was awarded a three-year National De-
fense Science and Engineering Graduate
Fellowship (NDSEG) by the American Soci-
ety for Engineering Education in 2005. He
is currently a Ph.D. candidate in Computer
Science at Columbia University, where he
is co-supervised by Professors Belhumeur

and Nayar. His main research interests are at the intersection of
computer vision and machine learning – developing techniques for
efficient search and recognition in large image databases.

Alexander C. Berg received the PhD degree
in Computer Science from U.C. Berkeley in
2005. He is currently a research scientist at
Columbia University, and will join the Com-
puter Science faculty at Stony Brook Univer-
sity in Fall 2010. Dr. Berg worked at Yahoo!
Research on computer vision for search and
advertising from 2007-2008. His research
addresses challenges in visual recognition at
all levels, including activity recognition, object
recognition, feature descriptors, video-based

motion synthesis, and face recognition, and a theme of work on
machine learning for computer vision.

Peter N. Belhumeur received the ScB de-
gree in Information Sciences from Brown
University in 1985. He received the PhD de-
gree in Engineering Sciences from Harvard
University under the direction of David Mum-
ford in 1993. He was a postdoctoral fellow at
the University of Cambridge’s Isaac Newton
Institute for Mathematical Sciences in 1994.
He was made Assistant, Associate, and Pro-
fessor of Electrical Engineering at Yale Uni-
versity in 1994, 1998, and 2001, respectively.

He joined Columbia University in 2002, where he is currently a
Professor in the Department of Computer Science and the director
of the Laboratory for the Study of Visual Appearance. His main
research focus is on illumination, reflectance, and shape, and their
relation to visual appearance. Within these areas, he concentrates
on two subproblems: the representation and recognition of objects
under variable illumination and the estimation of the geometry of
objects from low-level cues like image brightness, binocular stere-
opsis, and motion. Applications include face and object recognition,
image-based rendering, computer graphics, content-based image
and video compression, and human computer interfaces. He is a
recipient of the Presidential Early Career Award for Scientists and
Engineers (PECASE), the US National Science Foundation Career
Award, and the Yale University Junior Faculty Fellowship. His papers
have received the Siemens Best Paper Award at CVPR 1996, the
Olympus Prize at ECCV 1998 and a Best Paper Honorable Mention
Award at CVPR 2000.



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 17

Shree K. Nayar received the PhD degree
in Electrical and Computer Engineering from
the Robotics Institute at Carnegie Mellon
University in 1990. He is the T.C. Chang
Professor of Computer Science at Columbia
University and, since 2009, the chairman of
the department. He heads the Columbia Au-
tomated Vision Environment (CAVE), which
is dedicated to the development of advanced
computer vision systems. His research is
focused on three areas: the creation of cam-

eras that produce new forms of visual information, the modeling of
the interaction of light with materials, and the design of algorithms
that recognize objects from images. His work is motivated by applica-
tions in the fields of computer graphics, human-machine interfaces,
and robotics. Dr. Nayar has authored and coauthored papers that
have received the Best Paper Award at the 2004 CVPR Conference
held in Washington, DC, the Best Paper Honorable Mention Award
at the 2000 IEEE CVPR Conference held in Hilton Head, the David
Marr Prize at the 1995 ICCV held in Boston, the Siemens Out-
standing Paper Award at the 1994 IEEE CVPR Conference held in
Seattle, the 1994 Annual Pattern Recognition Award from the Pattern
Recognition Society, the Best Industry Related Paper Award at the
1994 ICPR held in Jerusalem, and the David Marr Prize at the 1990
ICCV held in Osaka. He was the recipient of the Columbia Great
Teacher Award in 2006, the Excellence in Engineering Teaching
Award from the Keck Foundation in 1995, the NTT Distinguished
Scientific Achievement Award from NTT Corporation, Japan, in 1994,
the National Young Investigator Award from the US National Science
Foundation in 1993, and the David and Lucile Packard Fellowship for
Science and Engineering in 1992. In February 2008, he was elected
to the National Academy of Engineering.


