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Abstract Entry-level categories — the labels people use to
name an object — were originally defined and studied by
psychologists in the 1970s and 80s. In this paper we extend
these ideas to study entry-level categories at a larger scale
and to learn models that can automatically predict entry-
level categories for images. Our models combine visual recog-
nition predictions with linguistic resources like WordNet and
proxies for word “naturalness” mined from the enormous
amount of text on the web. We demonstrate the usefulness
of our models for predicting nouns (entry-level words) asso-
ciated with images by people, and for learning mappings be-
tween concepts predicted by existing visual recognition sys-
tems and entry-level concepts. In this work we make use of
recent successful efforts on convolutional network models
for visual recognition by training classifiers for 7,404 object
categories on ConvNet activation features. Results for cate-
gory mapping and entry-level category prediction for images
show promise for producing more natural human-like labels.
We also demonstrate the potential applicability of our results
to the task of image description generation.
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grampus griseus dolphin 

Recognition Prediction What should I Call It? 

Fig. 1 Example translation between a WordNet based object category
prediction and what people might call the depicted object.

1 Introduction

Computational visual recognition is beginning to work. Al-
though far from solved, algorithms have now advanced to
the point where they can recognize or localize thousands
of object categories with reasonable accuracy (Deng et al.,
2010; Perronnin et al., 2012; Krizhevsky et al., 2012; Dean
et al., 2013; Simonyan and Zisserman, 2014; Szegedy et al.,
2014). Russakovsky et al. (2014) present an overview of
recent advances in classification and localization for up to
1000 object categories. While one could predict any one of
many relevant labels for an object, the question of “What
should I actually call it?” is becoming important for large-
scale visual recognition. For instance, if a classifier were
lucky enough to get the example in Figure 1 correct, it might
output grampus griseus, while most people would simply
call this object a dolphin. We propose to develop categoriza-
tion systems that are aware of these kinds of human naming
choices.
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Superordinates: animal, vertebrate
Basic Level: bird
Entry Level: bird
Subordinates: American robin

Superordinates: animal, vertebrate
Basic Level: bird
Entry Level: penguin
Subordinates: Chinstrap penguin

Fig. 2 An American Robin is a more prototypical type of bird hence
its entry-level category coincides with its basic level category while for
penguin which is a less prototypical example of bird, the entry-level
category is at a lower level of abstraction.

This notion is closely related to ideas of basic and entry-
level categories formulated by psychologists such as Eleanor
Rosch (Rosch, 1978) and Stephen Kosslyn (Jolicoeur et al.,
1984). Rosch defines basic-level categories as roughly those
categories at the highest level of generality that still share
many common attributes and have fewer distinctive attributes.
An example of a basic level category is bird where most
instances share attributes like having feathers, wings, and
beaks. Super-ordinate, more general, categories such as an-
imal will share fewer attributes and demonstrate more vari-
ability. Subordinate, more specific categories, such as Amer-
ican Robin will share even more attributes like shape, color,
and size. Rosch studied basic level categories through hu-
man experiments, e.g. asking people to enumerate common
attributes for a given category. The work of Jolicoeur et al.
(1984) further studied the way people identify categories,
defining the concept of entry-level categories. Entry level
categories are essentially the categories that people natu-
rally use to identify objects. The more prototypical an ob-
ject, the more likely it will have its entry point at the basic-
level category. For less typical objects the entry point might
be at a lower level of abstraction. For example an American
robin or a penguin are both members of the same basic-level
bird category. However, the American robin is more proto-
typical, sharing many features with other birds and thus its
entry-level category coincides with its basic-level category
of bird, while the entry-level category for a penguin would
be at a lower level of abstraction (see Figure 2).

So, while objects are members of many categories – e.g.
Mr Ed is a palomino, but also a horse, an equine, an odd-toed
ungulate, a placental mammal, a mammal, and so on – most
people looking at Mr Ed would tend to call him a horse, his
entry level category (unless they are fans of the show). Our
paper focuses on the problem of object naming in the con-
text of entry-level categories. We consider two related tasks:
1) learning a mapping from fine-grained / encyclopedic cat-

egories – e.g., leaf nodes in WordNet (Fellbaum, 1998) – to
what people are likely to call them (entry-level categories)
and 2) learning to map from outputs of thousands of noisy
computer vision classifiers/detectors evaluated on an image
to what a person is likely to call a depicted object.

Evaluations show that our models can effectively em-
ulate the naming choices of human observers. Furthermore,
we show that using noisy vision estimates for image content,
our system can output words that are significantly closer to
human annotations than either raw visual classifier predic-
tions or the results of using a state of the art hierarchical
classification system (Deng et al., 2012) that can output ob-
ject labels at varying levels of abstraction from very specific
terms to very general categories.

1.1 Insights into Entry-Level Categories

At first glance, the task of finding the entry-level categories
may seem like a linguistic problem of finding a hypernym of
any given word. Although there is a considerable conceptual
connection between entry-level categories and hypernyms,
there are two notable differences:

1. Although “bird” is a hypernym of both “penguin”, and
“sparrow”, “bird” may be a good entry-level category
for “sparrow”, but not for “penguin”. This phenomenon
— that some members of a category are more proto-
typical than others — is discussed in Prototype Theory
(Rosch, 1978).

2. Entry-level categories are not confined by (inherited) hy-
pernyms, in part because encyclopedic knowledge is dif-
ferent from common sense knowledge. For example “rhea”
is not a kind of “ostrich” in the strict taxonomical sense.
However, due to their visual similarity, people gener-
ally refer to a “rhea” as an “ostrich”. Adding to the
challenge is that although extensive, WordNet is neither
complete nor practically optimal for our purpose. For ex-
ample, according to WordNet, “kitten” is not a kind of
“cat”, and “tulip” is not a kind of “flower”.

In fact, both of the above points have a connection to
visual information of objects, as visually similar objects are
more likely to belong to the same entry-level category. In
this work, we present the first extensive study that (1) char-
acterizes entry-level categories in the context of translating
encyclopedic visual categories to natural names that people
commonly use, and (2) provides methods to predict entry-
level categories for input images guided by semantic word
knowledge or by using a large-scale corpus of images with
text.
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1.2 Paper Overview

Our paper is divided as follows. Section 2 presents a sum-
mary of related work. Section 3 introduces a large-scale im-
age categorization system based on convolutional network
activations. In Section 4 we learn translations from subordi-
nate concepts to entry-level concepts. In Section 5 we pro-
pose two models that can take an image as input and predict
entry-level concepts. Finally, in Section 6 we provide exper-
imental evaluations.

The major additions in this journal version compared to
our previous publication (Ordonez et al., 2013) include an
expanded discussion about related work in Section 2. We
have also replaced the large scale image categorization sys-
tem based on hand-crafted SIFT + LLC features used in
our previous work with a system based on state-of-the-art
convolutional network activations obtained using the Caffe
framework (Jia, 2013) (Section 3). Sections 4 and 5 have
been updated accordingly and include additional qualitative
examples. Section 6 contains a more thorough evaluation
studying the effect of the number of predicted outputs on
precision and recall, and an additional extrinsic evaluation
of the system in a sentence retrieval application.

2 Related work

Questions about entry-level categories are directly relevant
to recent work on the connection between computer vision
outputs and (generating) natural language descriptions of
images (Farhadi et al., 2010; Ordonez et al., 2011; Kuznetsova
et al., 2012; Mitchell et al., 2012; Yang et al., 2011; Gupta
et al., 2012; Kulkarni et al., 2013; Hodosh et al., 2013; Ram-
nath et al., 2014; Mason and Charniak, 2014; Kuznetsova
et al., 2014). Previous works have not directly addressed
naming preference choices for entry-level categories when
generating sentences. Often the computer vision label pre-
dictions are used directly during surface realization (Mitchell
et al., 2012; Kulkarni et al., 2013), resulting in choosing
non-human like namings for constructing sentences even when
handling a relatively small number of categories (i.e. Pascal
VOC categories like potted-plant, tv-monitor or person). For
these methods, our entry-level category predictions could
be used to generate more natural names for objects. Other
methods handle naming choices indirectly in a data-driven
fashion by borrowing human references from other visually
similar objects (Kuznetsova et al., 2012, 2014; Mason and
Charniak, 2014).

Our work is also related to previous works that aim to
discover visual categories from large-scale data. The works
of Yanai and Barnard (2005) and Barnard and Yanai (2006)
learn models for a set of categories by exploring images with
loosely associated text from the web. We learn our set of
categories directly as a subset of the WordNet (Fellbaum,

1998) hierarchy, or from the nouns used in a large set of
carefully selected image captions that directly refer to im-
ages. The more recent works of Chen et al. (2013) and Div-
vala et al. (2014) present systems capable of learning any
type of visual concept from images on the web, including
efforts to learn simple common sense relationships between
visual concepts (Chen et al., 2013). We provide a related
output in our work, learning mappings between entry-level
categories and subordinate/leaf-node categories. The recent
work of Feng et al. (2015) proposes that entry-level catego-
rization can be viewed as lexical semantic knowledge, and
presents a global inference formulation to map all encyclo-
pedic categories to their entry-level categories collectively.

On a technical level, our work is related to (Deng et al.,
2012) that tries to “hedge” predictions of visual content by
optimally backing off in the WordNet hierarchy. One key
difference is that our approach uses a reward function over
the WordNet hierarchy that is non-monotonic along paths
from the root to the leaves. Another difference is that we
have replaced the underlying leaf node classifiers from Deng
et al. (2012) with recent convolutional network activation
features. Our approach also allows mappings to be learned
from a WordNet leaf node, l, to natural word choices that are
not along a path from l to the root, “entity”. In evaluations,
our results significantly outperform those of (Deng et al.,
2012) because although optimal in some sense, they are not
optimal with respect to how people describe image content.

Our work is also related to the growing challenge of har-
nessing the ever increasing number of pre-trained recogni-
tion systems, thus avoiding “starting from scratch” when-
ever developing new applications. It is wasteful not to take
advantage of the CPU weeks (Felzenszwalb et al., 2010;
Krizhevsky et al., 2012), months (Deng et al., 2010, 2012),
or even millennia (Le et al., 2012) invested in developing
recognition models for increasingly large labeled datasets (Ev-
eringham et al., 2010; Russell et al., 2008; Xiao et al., 2010;
Deng et al., 2009; Torralba et al., 2008). However, for any
specific end-user application, the categories of objects, scenes,
and attributes labeled in a particular dataset may not be the
most useful predictions. One benefit of our work can be seen
as exploring the problem of translating the outputs of a vi-
sion system trained with one vocabulary of labels (WordNet
leaf nodes) to labels in a new vocabulary (commonly used
visually descriptive nouns).

Our proposed methods take into account several sources
of structure and information: the structure of WordNet, fre-
quencies of word use in large amounts of web text, outputs
of a large-scale visual recognition system, and large amounts
of paired image and text data. In particular, we use the SBU
Captioned Photo Dataset (Ordonez et al., 2011), which con-
sists of 1 million images with natural language descriptions,
and Google n-gram frequencies collected for all words on
the web. Taking all of these resources together, we are able



4 Vicente Ordonez et al.

to study patterns for choice of entry-level categories at a
much larger scale than previous psychology experiments.

3 A Large-Scale Image Categorization System

Large-scale image categorization has improved drastically
in recent years. The computer vision community has moved
from handling 101 categories (Fei-Fei et al., 2007) to 100,000
categories (Dean et al., 2013) in a few years. Large-scale
datasets like ImageNet (Deng et al., 2009) and recent progress
in training deep layered architectures (Krizhevsky et al., 2012)
have significantly improved the state-of-the-art. We leverage
a system based on these as the starting point for our work.

For features, we use activations from an internal layer of
a convolutional network, following the approach of (Don-
ahue et al., 2013). In particular, we use the pre-trained ref-
erence model from the Caffe framework (Jia, 2013) which
is in turn based on the model from Krizhevsky et al. (2012).
This model was trained on the 1,000 ImageNet categories
from the ImageNet Large Scale Visual Recognition Chal-
lenge 2012. We compute the 4,096 activations in the 7th
layer of this network for images in 7,404 leaf node cate-
gories from ImageNet and use them as features to train a
linear SVM for each category. We further use a validation
set to calibrate the output scores of each SVM with Platt
scaling (Platt, 1999).

4 Translating Encyclopedic Concepts
to Entry-Level Concepts

Our objective in this section is to discover mappings be-
tween subordinate encyclopedic concepts (ImageNet leaf cat-
egories, e.g. Chlorophyllum molybdites) to output concepts
that are more natural (e.g. mushroom). In Section 4.1 we
present an approach that relies on the WordNet hierarchy
and frequency of words in a web scale corpus. In Section
4.2 we follow an approach that uses visual recognition mod-
els learned on a paired image-caption dataset.

4.1 Language-based Translation

We first consider a translation approach that relies only on
language-based information: the hierarchical semantic struc-
ture from WordNet (Fellbaum, 1998) and text statistics from
the Google Web 1T corpus (Brants and Franz., 2006). We
posit that the frequencies of terms computed from massive
amounts of text on the web reflect the “naturalness” of con-
cepts. We use the n-gram counts of the Google Web 1T
corpus (Brants and Franz., 2006) as a proxy for natural-
ness. Specifically, for a synset w, we quantify naturalness
as, φ(w), the log of the count for the most commonly used

Animal 

Seabird 

Penguin Cormorant 

Cetacean 

Whale 

Dolphin Sperm 
whale 

Mammal 

Grampus 
griseus 

King 
penguin 

Bird 
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antic Distance 

𝜓𝜓(𝑤𝑤, 𝑣𝑣) 𝜙𝜙(𝑤𝑤) 
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Fig. 3 Our first categorical translation model uses the WordNet hier-
archy to find an hypernym that is close to the leaf node concept (se-
mantic distance) and has a large naturalness score based on its n-gram
frequency. The green arrows indicate the ideal category that would cor-
respond to the entry-level category for each leaf-node in this sample
semantic hierarchy.

synonym in w. As possible translation concepts for a given
category, v, we consider all nodes, w in v′s inherited hy-
pernym structure (all of the synsets along the WordNet path
from w to the root).

We define a translation function, τ(v, λ), for categories
that maximizes the trade-off between naturalness, φ(w), and
semantic proximity,ψ(w, v), measuring the distance between
leaf node v and node w in the WordNet hypernym structure:

τ(v, λ) = argmax
w

[φ(w)− λψ(w, v)], w ∈ Π(v), (1)

where Π(v) is the set of (inherited) hypernyms from v to
the root, including v. For instance given an input category
v = King penguin we consider all categories along its set
of inherited hypernyms, e.g. penguin, seabird, bird, animal
(see Figure 3). An ideal prediction for this concept would be
penguin. To control how the overall system trades off nat-
uralness vs semantic proximity, we perform line search to
set λ. For this purpose we use a held out set of subordinate-
category, entry-level category pairs (xi, yi) collected using
Amazon Mechanical Turk (MTurk) (for details refer to Sec-
tion 6.1). Our objective is to maximize the number of correct
translations predicted by our model (where 1[·] is the indi-
cator function):

Φ(D,λ) =
∑
i

1[τ(xi, λ) = yi]. (2)

We show the relationship between λ and vocabulary size
in Figure 4(a), and between λ and overall translation accu-
racy, Φ(D,λ), in Figure 4(b). As we increase λ, Φ(D,λ)
increases initially and then decreases as too much general-
ization or specificity reduces the naturalness of the predic-
tions. For example, generalizing from grampus griseus to
dolphin is good for “naturalness”, but generalizing all the
way to “entity” decreases “naturalness”. In Figure 4(b) the
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Fig. 4 Left: shows the relationship between parameter λ and the target
vocabulary size. Right: shows the relationship between parameter λ
and agreement accuracy with human labeled synsets evaluated against
the most agreed human label (red) and any human label (cyan).

red line shows accuracy for predicting the most agreed upon
word for a synset, while the cyan line shows the accuracy
for predicting any word collected from any user. Our exper-
iment also supports that entry-level categories seem to lie
at a certain level of abstraction where there is a discontinu-
ity. Going beyond this level of abstraction suddenly makes
our predictions considerably worse (see Figure 4(b)). Rosch
(1978) indeed argues in the context of basic level categories
that basic cuts in categorization happen precisely at these
discontinuities where there are bundles of information-rich
functional and perceptual attributes.

4.2 Visual-based Translation

Next, we try to make use of pre-trained visual classifiers
to improve translations between input concepts and entry-
level concepts. For a given leaf synset, v, we sample a set of
n = 100 images from ImageNet. For each image, i, we pre-
dict some potential entry-level nouns, Ni, using pre-trained
visual classifiers that we will describe later in Section 5.2.
We use the union of this set of labels N = N1 ∪N2...∪Nn

as keyword annotations for synset v and rank them using
a TFIDF information retrieval measure. We consider each
category v as a document for computing the inverse docu-
ment frequency (IDF) term. We pick the most highly ranked
noun for each node, v, as its entry-level categorical transla-
tion (see an example in Figure 5).

5 Predicting Entry-Level Concepts for Images

In Section 4 we proposed models to translate between one
linguistic concept, e.g. grampus griseus, to a more natural
concept, e.g. dolphin. Our objective in this section is to ex-
plore methods that can take an image as input and predict
entry-level labels for the depicted objects. The models we
propose are: 1) a method that combines “naturalness” mea-
sures from text statistics with direct estimates of visual con-

Friesian,  
Holstein,  
Holstein-Friesian 

(1.9071) cow 
(1.1851) orange_tree 
(0.6136) stall 
(0.5630) mushroom 
(0.3825) pasture 
(0.3156) sheep 
(0.3321) black_bear 
(0.3015) puppy 
(0.2409) pedestrian_bridge 
(0.2353) nest 

Vision 
System 

Fig. 5 We show the system instances of the category Friesian, Hol-
stein, Holstein-Friesian and the vision system pre-trained with candi-
date entry-level categories ranks a set of candidate keywords and out-
puts the most relevant, in this case cow.

tent computed at leaf nodes and inferred for internal nodes
(Section 5.1) and 2) a method that learns visual models for
entry-level category prediction directly from a large collec-
tion of images with associated captions (Section 5.2).

5.1 Linguistically-guided Naming

We estimate image content for an image, I , using the pre-
trained models from Section 3. These models predict pres-
ence or absence of 7,404 leaf node concepts in ImageNet
(WordNet). Following the approach of Deng et al. (2012),
we compute estimates of visual content for internal nodes by
hierarchically accumulating all predictions below a node:1

f(v, I) =

 f̂(v, I), if v is a leaf node,∑
v′∈Z(v)

f̂(v′, I), if v is an internal node, (3)

where Z(v) is the set of all leaf nodes under node v and
f̂(v, I) is a score predicting the presence of leaf node cat-
egory v from our large scale image categorization system
introduced in Section 3. Similar to our approach in Section
4.1, we define for every node in the ImageNet hierarchy a
trade-off function between “naturalness” φ (ngram counts)
and specificity ψ̃ (relative position in the WordNet hierar-
chy):

γ(v, λ̂) = [φ(w)− λ̂ψ̃(w)], (4)

where φ(w) is computed as the log counts of the nouns and
compound nouns in the text corpus from the SBU Captioned
Dataset (Ordonez et al., 2011), and ψ̃(w) is an upper bound
on ψ(w, v) from equation (1) equal to the maximum path in
the WordNet structure from node v to node w. We parame-
terize this trade-off by λ̂.

1 This function might bias decisions toward internal nodes. Other
alternatives could be explored to estimate internal node scores.
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Input Concept Language-based
Translation

Visual-based
Translation

Human  
Translation

1 eastern kingbird bird bird bird

2 cactus wren bird bird bird

3 buzzard, Buteo buteo hawk hawk hawk

4 whinchat, Saxicola rubetra chat bird bird

6 Weimaraner dog dog dog

7 Gordon setter dog dog dog

8 numbat, banded anteater, anteater anteater dog anteater

9 rhea, Rhea americana bird grass ostrich

10 Africanized bee, killer bee, Apis mellifera bee bee bee

11 conger, conger eel eel fish fish

12 merino, merino sheep sheep sheep sheep

13 Europ. black grouse, heathfowl, Lyrurus tetrix bird bird bird

14 yellowbelly marmot, rockchuck, Marm. flaviventris marmot male squirrel

15 snorkeling, snorkel diving swimming sea turtle snorkel

16 cologne, cologne water, eau de cologne essence bottle perfume

Fig. 6 Translations from ImageNet leaf node synset categories to entry-level categories using our automatic approaches from Sections 4.1 (left)
and 4.2 (center) and crowd-sourced human annotations from Section 6.1 (right).

For entry-level category prediction in images, we would
like to maximize both “naturalness” and estimates of image
content. For example, text based “naturalness” will tell us
that both cat and dog are good entry-level categories, but
a confident visual prediction for German shepherd for an
image tells us that dog is a much better entry-level prediction
than cat for that image.

Therefore, for an input image, we want to output a set of
concepts that have a large prediction for both “naturalness”
and content estimate score. For our experiments we output
the top K WordNet synsets with the highest fnat scores:

fnat(v, I, λ̂) = f(v, I)γ(v, λ̂). (5)

As we change λ̂ we expect a similar behavior as in our
language-based concept translations (Section 4.1). We can
tune λ̂ to control the degree of specificity while trying to pre-
serve “naturalness” using n-gram counts. We compare our
framework to the “hedging” technique of Deng et al. (2012)
for different settings of λ̂. For a side by side comparison
we modify hedging to output the top K synsets based on
their scoring function. Here, the working vocabulary is the
unique set of predicted labels output for each method on this
test set. Results demonstrate (Figure 7) that under different
parameter settings we consistently obtain much higher levels
of precision for predicting entry-level categories than hedg-
ing (Deng et al., 2012). We also obtain an additional gain
in performance than in our previous work (Ordonez et al.,
2013) by relying on the dataset-specific text-statistics of the
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Linguistically-guided naming (SBU Captions) 
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Fig. 7 Relationship between average precision agreement and work-
ing vocabulary size (on a set of 1000 images) for the hedging
method (Deng et al., 2012) (red) and our linguistically-guided nam-
ing method that uses text statistics from the generic Google Web 1T
dataset (magenta) and from the SBU Caption Dataset (Sec. 5.1). We
useK = 5 to generate this plot and a random set of 1000 images from
the SBU Captioned Dataset.

SBU Captioned Dataset rather than the more generic Google
Web 1T corpus.
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5.2 Visually-guided Naming

In the previous section we rely on WordNet structure to
compute estimates of image content, especially for inter-
nal nodes. However, this is not always a good measure of
content because: 1) The WordNet hierarchy doesn’t encode
knowledge about some semantic relationships between ob-
jects (i.e. functional or contextual relationships), 2) Even
with the vast coverage of 7,404 ImageNet leaf nodes we are
missing models for many potentially important entry-level
categories that are not at the leaf level.

As an alternative, we can directly train models for entry-
level categories from data where people have provided entry-
level labels – in the form of nouns present in visually de-
scriptive image captions. We postulate that these nouns rep-
resent examples of entry-level labels because they have been
naturally annotated by people to describe what is present
in an image. For this task, we leverage the SBU Captioned
Photo Dataset (Ordonez et al., 2011), which contains 1 mil-
lion captioned images. We transform this dataset into a set
D = {X(j), Y (j) | X(j) ∈ X, Y (j) ∈ Y}, where X =

[0–1]S is a vector of estimates of visual content for S =

7, 404 ImageNet leaf node categories and Y = [0, 1]d is a
set of binary output labels for d target categories.

Input content estimates are provided by the deep learn-
ing based SVM predictions (described in Section 3). We run
the SVM predictors over the whole image as opposed to the
max-pooling approach over bounding boxes from our pre-
vious paper (Ordonez et al., 2013) so that we have a more
uniform comparison to our linguistically-guided naming ap-
proach (Section 5.1) which does the same. There was some
minor drop in performance when running our models ex-
clusively on the whole image. Compared to our previous
work, our visually-guided naming approach still has a sig-
nificant gain from using the ConvNet features introduced in
section 3.

For training our d target categories, we obtain labels Y
from the million captions by running a POS-tagger (Bird,
2006) and defining Y (j) = {yij} such that:

yij =

{
1, if caption for image j has noun i,
0, if otherwise.

(6)

The POS-tagger helps clean up some word sense am-
biguity due to polysemy, by only selecting those instances
where a word is used as a noun. d is determined experi-
mentally from data by learning models for the most frequent
nouns in this dataset. This provides us with a target vocabu-
lary that is both likely to contain entry-level categories (be-
cause we expect entry-level category nouns to commonly
occur in our visual descriptions) and to contain sufficient im-
ages for training effective recognition models. We use up to
10,000 images for training each model. Since we are using
human labels from real-world data, the frequency of words

in our target vocabulary follows a power-law distribution.
Hence we only have a very large amount of training data
for a few most commonly occurring noun concepts. Specif-
ically, we learn linear SVMs followed by Platt scaling for
each of our target concepts. We keep d = 1, 169 of the best
performing models. Our scoring function fsvm for a target
concept vi is then:

fsvm(vi, I, θi) =
1

1− exp(aiθ>i X + bi)
, (7)

where θi are the model parameters for predicting concept vi,
and ai and bi are Platt scaling parameters learned for each
target concept vi on a held out validation set.

R(θi) =
1

2
‖θi‖+ c

|D|∑
j=1

max(0, 1− yijθ>i X(j))2. (8)

We learn the parameters θi by minimizing the squared hinge-
loss with `1 regularization (eqn 8). The latter provides a nat-
ural way of modeling the relationships between the input
and output label spaces that encourages sparseness (exam-
ples in Figure 8). We find c = 0.01 to yield good results
for our problem and use this value for training all individual
models.

One of the drawbacks of using the ImageNet hierarchy
to aggregate estimates of visual concepts (Section 5.1) is that
it ignores more complex relationships between concepts. Here,
our data-driven approach to the problem implicitly discov-
ers these relationships. For instance a concept like tree has a
co-occurrence relationship with bird that may be useful for

PR curve Most confident correct predictions Most confident wrong predictions 

house 

market 

girl 

boy 

cat 

bird 

Fig. 9 Sample predictions from our experiments on a test set for each
type of category. Note that image labels come from caption nouns, so
some images marked as correct predictions might not depict the tar-
get concept whereas some images marked as wrong predictions might
actually depict the target category.
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tree 

iron tree, iron-tree, ironwood, ironwood tree  
snag  
European silver fir, Christmas tree, Abies alba  
baobab, monkey-bread tree, Adansonia digitata  
Japanese black pine, black pine, Pinus thunbergii  
huisache, cassie, mimosa bush, sweet wattle, sweet acacia, scented wattle, 
flame tree, Acacia farnesiana  
feeder  
bird feeder, birdfeeder, feeder  
koala, koala bear, kangaroo bear, native bear, Phascolarctos cinereus  
flying fox  
damask  
American basswood, American lime, Tilia americana  

desk 

furnishing, trappings  
cat box  
reformer  
dining area  
writing desk  
Staffordshire bullterrier, Staffordshire bull terrier  
rubber eraser, rubber, pencil eraser  
shoebox  
flash, photoflash, flash lamp, flashgun, flashbulb, flash bulb  
control room  
sausage dog, sausage hound  
mouse, computer mouse  
workstation  
 

water 

riverbank, riverside  
waterside  
fishbowl, fish bowl, goldfish bowl  
organza  
diving duck  
bathe  
hand towel, face towel  
pier  
horseshoe crab, king crab, Limulus polyphemus, Xiphosurus polyphemus  
background, desktop, screen background  
cling film, clingfilm, Saran Wrap  
water jump  
camouflage, camo  

house 

 
farmhouse  
detached house, single dwelling  
toolshed, toolhouse  
chalet  
fixer-upper  
lowboy  
vibraphone, vibraharp, vibes  
banded purple, white admiral, Limenitis arthemis  
ladies' room, powder room  
cream-of-tartar tree, sour gourd, Adansonia gregorii  
windowsill  
bomb shelter, air-raid shelter, bombproof  

dog_house 

kennel, doghouse, dog house  
chalet  
firebox  
leash, tether, lead  
flamethrower  
fairy bluebird, bluebird  
chicken coop, coop, hencoop, henhouse  
pajama, pyjama  
shadow box  
treasure chest  
Newfoundland, Newfoundland dog  
whitewash  
playpen, pen  

Fig. 8 Entry-level categories with their corresponding top weighted leaf node features after training an SVM on our noisy data and a visual-
ization of weights grouped by an arbitrary categorization of leaf nodes. vegetation(green), birds(orange), instruments(blue), structures(brown),
mammals(red), others(black).
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prediction. A chair is often occluded by the objects sitting on
the chair, but evidence of those types of objects, e.g. people
or cat or co-occurring objects, e.g. table can help us pre-
dict the presence of a chair. See Figure 8 for some example
learned relationships.

Given this large dataset of images with noisy visual pre-
dictions and text labels, we manage to learn quite good es-
timators of high-level content, even for categories with rela-
tively high intra-class variation (e.g. girl, boy, market, house).
We show some results of images with predicted output labels
for a group of images in Figure 9.

6 Experimental Evaluation

We evaluate two results from our paper – models that learn
general translations from encyclopedic concepts to entry-
level concepts (Section 6.1) and models that predict entry-
level concepts for images (Section 6.2). We additionally pro-
vide an extrinsic evaluation of our naming prediction meth-
ods by using them for a sentence retrieval application (Sec-
tion 6.3).

6.1 Evaluating Translations

We obtain translations from ImageNet synsets to entry-level
categories using Amazon Mechanical Turk (MTurk). In our
experiments, users are presented with a 2x5 array of images
sampled from an ImageNet synset, xi, and asked to label
the depicted concept. Results are obtained for 500 ImageNet
synsets and aggregated across 8 users per task. We found
agreement (measured as at least 3 of 8 users in agreement)
among users for 447 of the 500 concepts, indicating that
even though there are many potential labels for each synset
(e.g. Sarcophaga carnaria could conceivably be labeled as
fly, dipterous insect, insect, arthropod, etc) people have a
strong preference for particular categories. We denote our
resulting set of reference translations as: D = {(xi, yi)},
where each element pair corresponds to a translation from a
leaf node xi to an entry-level word yi.

We show sample results from each of our methods to
learn concept translations in Figure 6. In some cases language-
based translation fails. For example, whinchat (a type of
bird) translates to “chat” most likely because of the inflated
counts for the most common use of “chat”. Visual-based
translation fails when it learns to weight context words highly,
for example “snorkeling” → “water”, or “African bee” →
“flower” even when we try to account for common con-
text words using TFIDF. Finally, even humans are not al-
ways correct, for example “Rhea americana” looks like an
ostrich, but is not taxonomically one. Even for categories
like “marmot” most people named it “squirrel”. Overall, our
language-based translation (Section 4.1) agrees 37% of the

time with human supplied translations and the visual-based
translation (Section 4.2) agrees 33% of the time, indicat-
ing that translation learning is a non-trivial task. Our visual-
based translation benefits significantly from using ConvNet
features (Section 3) compared to the 21% agreement that we
previously reported in Ordonez et al. (2013). Note that our
visual-based translation unlike our language-based transla-
tion does not use the WordNet semantic hierarchy to con-
strain the output categories to the set of inherited hypernyms
of the input category.

This experiment expands on previous studies in psychol-
ogy (Rosch, 1978; Jolicoeur et al., 1984). Readily available
and inexpensive online crowdsourcing enables us to gather
these labels for a much larger set of (500) concepts than pre-
vious experiments and to learn generalizations for a substan-
tially larger set of ImageNet synsets.

6.2 Evaluating Image Entry-Level Predictions

We measure the accuracy of our proposed entry-level cate-
gory prediction methods by evaluating how well we can pre-
dict nouns freely associated with images by users on Ama-
zon Mechanical Turk. We initially selected two evaluation
image sets. Dataset A: contains 1000 images selected at
random from the million image dataset. Dataset B: contains
1000 images selected from images displaying high confi-
dence in concept predictions. We additionally collected an-
notations for another 2000 images so that we can tune trade-
off parameters in our models. Both sets are completely dis-
joint from the sets of images used for learning. For each im-
age, we instruct 3 users on MTurk to write down any nouns
that are relevant to the image content. Because these anno-
tations are free associations we observe a large and varied
set of associated nouns – 3,610 distinct nouns total in our
evaluation sets. This makes noun prediction extremely chal-
lenging!

For evaluation, we measure how well we can predict all
nouns associated with an image by Turkers (Figure 10) and
how well we can predict the nouns commonly associated by
Turkers (assigned by at least 2 of 3 Turkers, Figure 11). For
reference we compute the precision of one human annotator
against the other two and found that on Dataset A humans
were able to predict what the previous annotators labeled
with 0.35 precision and with 0.45 precision for Dataset B.

Results show precision and recall for prediction on each
of our Datasets, comparing: leaf node classification perfor-
mance (flat classifier), the outputs of hedging (Deng et al.,
2012), and our proposed entry-level category predictors (lin-
guistically guided naming (Section 5.1) and visually guided
naming (Section 5.2)). Qualitative examples for Dataset A
are shown in Figure 13 and for Dataset B in Figure 14.
Performance at this task on Dataset B is in general better
than performance on Dataset A. This is unsurprising since
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Fig. 10 Precision-recall curves for different entry-level prediction methods when using the top K categorical predictions for K =
1, 3, 5, 10, 15, 20, 50. The ground truth is the union of labels from all users for each image.
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Fig. 11 Precision-recall curves for different entry-level prediction methods when using the top K categorical predictions for K =
1, 3, 5, 10, 15, 20, 50. The ground truth is the set of labels where at least two users agreed.

Dataset B contains images which have confident classifier
scores. Surprisingly their difference in performance is not
extreme and performance on both sets is admirable for this
challenging task. When compared to our previous work (Or-
donez et al., 2013) that relies on SIFT + LLC features, we
found that the inclusion of ConvNet features provided a sig-
nificant improvement in the performance for the visually-
guided naming predictions but it did not improve the re-
sults using the WordNet semantic hierarchy for both Hedg-

ing (Deng et al., 2012) and our linguistically-guided naming
method.

On the two datasets we find the visually-guided naming
model to perform better (Section 5.2) than the linguistically-
guided naming prediction (Section 5.1). In addition, we out-
perform both leaf node classification and the hedging tech-
nique (Deng et al., 2012).

We additionally collected a third test set Dataset C con-
sisting of random ImageNet images belonging to the 7,404
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Method Images Original Caption Top 5 Retrieved Sentences

Visually-guided
Naming

(808) “dining area in great room open to 
kitchen opens to seat 8 people”

(1) [table area beside kitchen]
(2) [work table sitting area in separate room 
bathroom kitchen area sleeping area]
(3) [dining table in kitchen area]
(4) [by the kitchen table area]
(5) [dining room table in kitchen]

Visually-guided
Naming

(1105) “fresh snow on pine trees in yosemite 
national park”

(1) [pine trees forest under snow]
(2) [pine tree in snow]
(3) [pine tree in snow]
(4) [snow in pine tree]
(5) [pine tree in snow]

Visually-guided
Naming

(60747) “theres no room in the chair for me 
so i am sitting in daddys spot on the floor” 

(1) [dog and cat in chair]
(2) [dog and cat in chair]
(3) [bear in a chair poor chair bear]
(4) [dog in cat]
(5) [cat in chair]

Linguistically-
guided Naming

(519) “cat in the box”

(1) [cat in box cat on box]
(2) [cat in the cat box]
(3) [obligatory cat in box picture]
(4) [cat in cats]
(5) [cat in box upside down cat]

Linguistically-
guided Naming

(37153) “we were wondering where you 
could sail a boat in colorado we passed this 
boat about 4 times”

(1) [car under boat]
(2) [car in truck]
(3) [car in car mirror]
(4) [portable car toy box in cars and trucks]
(5) [car in car mirror bw]

Fig. 12 Good examples of retrieved sentences describing image content. We show the original sentence for each image with its corresponding
rank in parenthesis. We also show the top 5 retrieved sentences for each image. We are showing here only images that ranked highly the original
caption (within the top 10%) .

Method
Precision
K = 1, 2, 3

Recall
K = 1, 2, 3

Flat classifier 4.40, 4.00, 3.43 2.10, 3.82, 4.87
Hedging 9.00, 9.55, 10.25 4.90, 11.72, 19.64
Linguist.-guided 26.70, 16.15, 12.90 17.59, 19.52, 22.25
Visually-guided 25.80, 17.95, 13.73 17.50, 22.76, 25.73

Table 1 Here we show results on Dataset C which consists of images
from ImageNet. The human labels for each image are the union of the
labels collected from different Mechanical Turk users.

categories represented in our leaf node classifiers. We make
sure not to include those images in the training of our leaf
node classifiers. These images are more object-centric, often
displaying a single object. This resulted in a smaller number

of unique labels provided by users for each image with an
average of 2 unique labels per image. We report the preci-
sion and recall at K = 1, 2, 3 for all of our methods in this
dataset in Table 1. We observe that at K = 1 there is a small
advantage of our linguistically-guided naming method com-
pared to the visually-guided naming approach. Both meth-
ods surpass the flat mapping classifiers and the Hedging ap-
proach. In this different dataset the entry-level category pre-
dictors using our visually-guided naming approach still of-
fer better performance than the linguistically-guided naming
approach at K = 2, 3. Note that our linguistically-guided
naming does not require expensive retraining of visual mod-
els like our visually-guided naming. Also, the gap between
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Dataset A Dataset B
Method Top 1% Top 10% Top 1% Top 10%
Flat classifier 40 80 48 93
Hedging 62 172 92 266
Linguistically-guided 71 310 104 416
Visually-guided 162 516 210 617

Table 2 Here we show the number of images (for each dataset and
method) for which we could retrieve its original image description
within the top 1% and the top 10%. Note that each dataset has 1000
images in total.

our two naming approaches is smaller than in the previous
experiments on Datasets A and B.

6.3 Evaluating Image Entry-Level Predictions for Sentence
Retrieval

Entry-level categories are also the natural categories that
people use in casual language. We evaluate our produced
naming predictions indirectly by using them to retrieve im-
age descriptions. Our sentence retrieval approach works as
follows: We predict entry-level categories with K = 5 and
use them as keywords to retrieve a ranked list of sentences
from the entire 1 million image descriptions in the SBU Cap-
tioned Dataset. We use cosine similarity on a bag-of-words
model for representation and ranking.

The images in our test Dataset A and Dataset B in the
previous section come from the SBU Captioned Dataset and
therefore already have one image description associated with
each of them. This image description was written by the
owner of each picture. Note that these “ground truth” im-
age descriptions for each of our test images are included in
the pool of 1 million captions. We use the rank of the ground
truth image description for each image as a measure of per-
formance in this task. We report on Table 2 the number of
images for which its “ground truth” description was ranked
within the top 1% and the top 10% for the various methods
compared in our paper and for each test set. Although our
evaluation uses a rough metric of performance, we observed
that the top 5 sentences retrieved for images that had its orig-
inal sentence ranked within the top 1% were also often very
good descriptions for the query image. We show some qual-
itative examples in Figure 12.

7 Conclusion

Results indicate that our inferred concept translations are
meaningful and that our models are able to predict entry-
level categories—the words people use to describe image
content—for images. Our models managed to leverage a large
scale visual categorization system to make new types of pre-
dictions. These methods could apply to a wide range of end-
user applications that require recognition outputs to be use-

ful for human consumption, including tasks related to de-
scription generation and retrieval. We presented an initial
experiment on this direction for image description using a
sentence retrieval approach.
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Fig. 13 Example translations on Dataset A (random images). 1st col shows images. 2nd col shows MTurk associated nouns. These represent
the ground truth annotations (entry-level categories) we would like to predict (colored in blue). 3rd col shows predicted nouns using a standard
multi-class flat-classifier. 4th col shows nouns predicted by the method of (Deng et al., 2012). 5th col shows our n-gram based method predictions.
6th col shows our SVM mapping predictions and finally the 7th column shows the labels predicted by our joint model. Matches are colored in
green. Figures 10,11 show the measured improvements in recall and precision.
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Fig. 14 Example translations on Dataset B (images with high response to visual models). 1st col shows images. 2nd col shows MTurk associated
nouns. These represent the ground truth annotations (entry-level categories) we would like to predict (colored in blue). 3rd col shows predicted
nouns using a standard multi-class flat-classifier. 4th col shows nouns predicted by the method of (Deng et al., 2012). 5th col shows our n-gram
based method predictions. 6th col shows our SVM mapping predictions and finally the 7th column shows the labels predicted by our joint model.
Matches are colored in green. Figures 10,11 show the measured improvements in recall and precision.
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