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Abstract
We present two novel methods for face verification. Our

first method – “attribute” classifiers – uses binary classi-
fiers trained to recognize the presence or absence of de-
scribable aspects of visual appearance (e.g., gender, race,
and age). Our second method – “simile” classifiers – re-
moves the manual labeling required for attribute classifica-
tion and instead learns the similarity of faces, or regions
of faces, to specific reference people. Neither method re-
quires costly, often brittle, alignment between image pairs;
yet, both methods produce compact visual descriptions, and
work on real-world images. Furthermore, both the attribute
and simile classifiers improve on the current state-of-the-art
for the LFW data set, reducing the error rates compared to
the current best by 23.92% and 26.34%, respectively, and
31.68% when combined. For further testing across pose,
illumination, and expression, we introduce a new data set
– termed PubFig – of real-world images of public figures
(celebrities and politicians) acquired from the internet. This
data set is both larger (60,000 images) and deeper (300
images per individual) than existing data sets of its kind.
Finally, we present an evaluation of human performance.

1. Introduction
There is enormous variability in the manner in which the
same face presents itself to a camera: not only might the
pose differ, but so might the expression and hairstyle. Mak-
ing matters worse – at least for researchers in computer vi-
sion – is that the illumination direction, camera type, focus,
resolution, and image compression are all almost certain to
differ as well. These manifold differences in images of the
same person have confounded methods for automatic face
recognition and verification, often limiting the reliability of
automatic algorithms to the domain of more controlled set-
tings with cooperative subjects [33, 3, 29, 16, 30, 31, 14].

Recently, there has been significant work on the “La-
beled Faces in the Wild” (LFW) data set [19]. This data
set is remarkable in its variability, exhibiting all of the
differences mentioned above. Not surprisingly, LFW has
proven difficult for automatic face verification methods
[25, 34, 17, 18, 19]. When one analyzes the failure cases for
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Figure 1: Attribute Classifiers: An attribute classifier can be
trained to recognize the presence or absence of a describable as-
pect of visual appearance. The responses for several such attribute
classifiers are shown for a pair of images of Halle Berry. Note
that the “flash” and “shiny skin” attributes produce very differ-
ent responses, while the responses for the remaining attributes are
in strong agreement despite the changes in pose, illumination, ex-
pression, and image quality. We use these attributes for face verifi-
cation, achieving a 23.92% drop in error rates on the LFW bench-
mark compared to the existing state-of-the-art.

some of the existing algorithms, many mistakes are found
that would seem to be avoidable: men being confused for
women, young people for old, asians for caucasians, etc. On
the other hand, small changes in pose, expression, or light-
ing can cause two otherwise similar images of the same per-
son to be mis-classified by an algorithm as different. How-
ever, we show that humans do very well on the same data –
given image pairs, verification of identity can be performed
almost without error.

In this paper, we attempt to advance the state-of-the-
art for face verification in uncontrolled settings with non-
cooperative subjects. To this end, we present two novel
and complementary methods for face verification. Common
to both methods is the idea of extracting and comparing
“high-level” visual features, or traits, of a face image that



are insensitive to pose, illumination, expression, and other
imaging conditions. These methods also have the advantage
that the training data they require is easier to acquire than
collecting a large gallery of images per enrolled individual
(as is needed by traditional face recognition systems).

Our first method – based on attribute classifiers – uses
binary classifiers trained to recognize the presence or ab-
sence of describable aspects of visual appearance (gender,
race, age, hair color, etc.). We call these visual traits “at-
tributes,” following the name and method of [21]. For ex-
ample, Figure 1 shows the values of various attributes for
two images of Halle Berry. Note that the “flash” and “shiny
skin” attributes produce very different responses, while the
responses for the remaining attributes are in strong agree-
ment despite the changes in pose, illumination, and expres-
sion. To date, we have built sixty-five attribute classifiers,
although one could train many more.

Our second method – based on simile classifiers – re-
moves the manual labeling required to train attribute clas-
sifiers. The simile classifiers are binary classifiers trained
to recognize the similarity of faces, or regions of faces, to
specific reference people. We call these visual traits “simi-
les.” The idea is to automatically learn similes that distin-
guish a person from the general population. An unseen face
might be described as having a mouth that looks like Barack
Obama’s and a nose that looks like Owen Wilson’s. Figure 2
shows the responses for several such simile classifiers for a
pair of images of Harrison Ford. Rj denotes reference per-
son j, so the first bar on the left displays similarity to the
eyes of reference person 1. Note that the responses are, for
the most part, in agreement despite the changes in pose, il-
lumination, and expression. To date, we have used sixty ref-
erence people to build our simile classifiers, although many
more could be added with little effort.

Our approach for face verification does not use expen-
sive computation to align pairs of faces. The relatively short
(65–3000 dimensional) vector of outputs from the trait clas-
sifiers (attribute and simile) are computed on each face inde-
pendently. Comparing two faces is simply a matter of com-
paring these trait vectors. Remarkably, both the attribute
and simile classifiers give state-of-the-art results, reducing
the previous best error rates [34] on LFW [19] by 23.92%
and 26.34%, respectively. To our knowledge this is the first
time visual traits have been used for face verification.

As the attribute and simile classifiers offer complemen-
tary information, one would expect that combining these
would further lower the error rates. For instance, it is pos-
sible for two people of different genders to have eyes like
Salma Hayek’s and noses like Meryl Streep’s. So, while the
simile classifier might confuse these, the attribute classifier
would not. Our experiments seem to support this, as com-
bining the attributes and similes together reduce the previ-
ous best error rates by 31.68%.

Figure 2: Simile Classifiers: We use a large number of “simile”
classifiers trained to recognize the similarities of parts of faces to
specific reference people. The responses for several such simile
classifiers are shown for a pair of images of Harrison Ford. Rj
denotes reference person j, so the first bar on the left displays
the similarity to the eyes of reference person 1. Note that the re-
sponses are, for the most part, in agreement despite the changes in
pose, illumination, and expression. We use these similes for face
verification, achieving a 26.34% drop in error rates on the LFW
benchmark compared to the existing state-of-the-art.

For testing beyond the LFW data set, we introduce Pub-
Fig – a new data set of real-world images of public figures
(celebrities and politicians) acquired from the internet. The
PubFig data set is both larger (60,000 images) and deeper
(on average 300 images per individual) than existing data
sets, and allows us to present verification results broken out
by pose, illumination, and expression.

We summarize the contributions of the paper below:
1. Attribute Classifiers: We introduce classifiers for

face verification, using 65 describable visual traits
such as gender, age, race, hair color, etc.; the classi-
fiers improve on the state-of-the-art, reducing overall
error rates by 23.92% on LFW.

2. Simile Classifiers: We introduce classifiers for face
verification, using similarities to a set of 60 reference
faces; the classifiers improve on the state-of-the-art,
reducing overall error rates by 26.34% on LFW. The
simile classifiers do not require the manual labeling of
training sets.

3. PubFig Data set: We introduce PubFig, the
largest data set of real-world images (60,000)
for face verification (and recognition), publicly
available at http://www.cs.columbia.edu/
CAVE/databases/pubfig/.

4. Human Performance Evaluation: We present an
evaluation of human performance on the LFW data set.

http://www.cs.columbia.edu/CAVE/databases/pubfig/
http://www.cs.columbia.edu/CAVE/databases/pubfig/


2. Related Work
It is well understood that variation in pose and expression
and, to a lesser extent, lighting cause significant difficul-
ties for recognizing the identity of a person [35]. The Pose,
Illumination, and Expression (PIE) data set and follow-on
results [33] showed that sometimes alignment, especially in
3D, can overcome these difficulties [3, 4, 16, 33, 7].

Unfortunately, in the setting of real-world images such as
those in Huang et al.’s “Labeled Faces in the Wild” (LFW)
benchmark data set [19] and similar data sets [2, 10], 3D
alignment is difficult and has not (yet) been demonstrated.
Various 2D alignment strategies have been applied to LFW
– aligning all faces [17] to each other, or aligning each pair
of images to be considered for verification [25, 11]. Ap-
proaches that require alignment between each image pair
are computationally expensive. Our work does not require
pairwise alignment. Neither does that of the previously
most successful approach on LFW from Wolf et al. [34],
which uses a large set of carefully designed binary patch
features. However, in contrast to Wolf et al. [34], our fea-
tures are designed to provide information about the identity
of an individual in two ways: by recognizing describable at-
tributes (attribute classifiers), and by recognizing similarity
to a set of reference people (simile classifiers).

Our low-level features are designed following a great
deal of work in face recognition (and the larger recogni-
tion community) which has identified gradient direction and
local descriptors around fiducial features as effective first
steps toward dealing with illumination [6, 28, 22, 23, 10].

Automatically determining the gender of a face has been
an active area of research since at least 1990 [15, 9], and
includes more recent work [24] using Support Vector Ma-
chines (SVMs) [8]. This was later extended to the recogni-
tion of ethnicity [32], pose [20], expression [1], etc. More
recently, a method for automatically training classifiers for
these and many other types of attributes was proposed, for
the purpose of searching databases of face images [21]. We
follow their method for training our attribute classifiers, but
improve on their feature selection process and the number
of attributes considered. Gallagher and Chen [13] use esti-
mates of age and gender to compute the likelihood of first
names being associated with a particular face, but to our
knowledge, no previous work has used attributes as features
for face verification.

3. Our Approach
The first step of our approach is to extract “low-level” fea-
tures from different regions of the face, e.g., normalized
pixel values, image gradient directions, or histograms of
edge magnitudes. But as our aim is to design a face verifi-
cation method that is tolerant of image changes, our second
step is to use these low-level features to compute “high-
level” visual features, or traits, which are insensitive to

changes in pose, illumination, and expression. These vi-
sual traits are simply scores of our trait classifiers (attribute
or simile). To perform face verification on a pair of images,
we compare the scores in both images. Our steps are for-
malized below:

1. Extract Low-level Features: For each face image I ,
we extract the output of k low-level features fi=1...k

and concatenate these vectors to form a large feature
vector F (I) = 〈f1(I), · · · , fk(I)〉.

2. Compute Visual Traits: For each extracted feature
vector F (I), we compute the output of n trait classi-
fiers Ci=1...n in order to produce a “trait vector” C(I)
for the face, C(I) = 〈C1(F (I)), · · · , Cn(F (I))〉.

3. Perform Verification: To decide if two face images
I1 and I2 are of the same person, we compare their
trait vectors using a final classifier D which defines
our verification function v:

v(I1, I2) = D (C(I1),C(I2)) (1)

v(I1, I2) should be positive when the face images I1

and I2 show the same person and negative otherwise.

Section 3.1 describes the low-level features {fi}. Our
trait classifiers {Ci} are discussed in Section 3.2 (attribute
classifiers) and Section 3.3 (simile classifiers). The final
classifier D is described in Section 3.4.

3.1. Low-level Features
To extract low-level features, we follow the procedure de-
scribed in [21], summarized here. We first detect faces
and fiducial point locations using a commercial face detec-
tor [26]. The faces are then rectified to a common coor-
dinate system using an affine warp based on the fiducials.
The low-level features are constructed by choosing a face
region, a feature type to extract from this region, a normal-
ization to apply to the extracted values, and an aggregation
of these values.

The regions were constructed by hand-labeling different
parts of the rectified face images, such as the eyes, nose,
mouth, etc. (To handle the larger variation of pose in our
data, we slightly enlarged the regions shown in [21].) Fea-
ture types include image intensities in RGB and HSV color
spaces, edge magnitudes, and gradient directions. Normal-
ization can be done by subtracting the mean and dividing by
the standard deviation, or by just dividing by the mean, or
not at all. Finally, the normalized values can be aggregated
by concatenating them, collapsing them into histograms, or
representing them only by their mean and variance.

This produces a large number of possible low-level fea-
tures, {fi}, a subset of which is automatically chosen and
used for each trait classifier Ci, as described next.



Figure 3: Attributes for Training: Each row shows training ex-
amples of face images that match the given attribute label (positive
examples) and those that don’t (negative examples). Accuracies
for all of our 65 attributes are shown in Table 1.

3.2. Attribute Classifiers
We build classifiers Ci to detect the describable attributes
of faces, e.g., as shown in Figure 3. While coarse attributes
such as gender, age, and race will of course provide strong
cues about a person’s identity, these alone are not sufficient
for successful face verification – we will need the outputs
of as many different attributes as we can get.

We thus train several attribute classifiers, using an ap-
proach much like [21]. Their work treats attribute classifi-
cation as a supervised learning problem. Training requires
a set of positive and negative example images for each at-
tribute, and uses a simplified version of adaboost [12] to
choose from the set of low-level features described in the
previous section. However, one downside to their simplifi-
cation of ababoost is that the weak learners are only trained
once during feature selection. To get around this drawback,
we use forward feature selection, where we consider ap-
pending each remaining feature to the current feature set
and choose the one that drops error rates the most. We do
this greedily to pick up to a maximum of 6 features.

Each attribute classifier is an SVM with an RBF kernel,
trained using libsvm [5]. The accuracies on held out data of
65 attribute classifiers trained using our system are shown
in Table 1. We note that although a few are lower than [21],
the images used in our system are not limited to only frontal
poses (as in theirs). Examples of some of the training data
used for a few of our attributes are shown in Figure 3.

Obtaining Training Data: Our attribute training procedure
is fully automatic given the initial labeling of positive and
negative examples. At 1,000+ examples per attribute (at
least 500 positive and 500 negative), this quickly becomes
the main bottleneck in our attribute training process – for
our set of 65 attributes, we had to obtain at least 65,000
labels for training, and more for validation.

To collect this large number of labels, we used Amazon
Mechanical Turk.1 This service matches online workers
to online jobs. “Requesters” can submit jobs to be com-
pleted by workers, optionally setting various quality con-
trols such as confirmation of results by multiple workers,
filters on minimum worker experience, etc. The jobs we
created asked workers to mark face images which exhibited
a specified attribute. (A few manually-labeled images were
shown as examples.) Each job was submitted to 3 differ-
ent workers and only labels where all 3 people agreed were
used. In this way, we collected over 125,000 confirmed la-
bels over the course of a month, for less than $5,000.2

3.3. Simile Classifiers
The attribute classifiers described in the previous section,
while offering state-of-the-art performance on LFW, require
each attribute to be describable in words. However, one can
imagine that there are many visual cues to people’s identi-
ties that cannot be described – at least not concisely.

In order to use this complementary information, we in-
troduce the concept of a “simile” classifier. The basic idea
is that we can describe a person’s appearance in terms of the
similarity of different parts of their face to a limited set of
“reference” people. For example, someone’s mouth might

1http://mturk.com
2We submitted 73,000 jobs showing 30 images to each of the 3 workers

per job, gathering a total of 6.5 million user inputs.
Attribute Accuracy Attribute Accuracy
Asian 92.32% Mouth Wide Open 89.63%
Attractive Woman 81.13% Mustache 91.88%
Baby 90.45% No Beard 89.53%
Bags Under Eyes 86.23% No Eyewear 93.55%
Bald 83.22% Nose Shape 86.87%
Bangs 88.70% Nose Size 87.50%
Black 88.65% Nose-Mouth Lines 93.10%
Black Hair 80.32% Obstructed Forehead 79.11%
Blond Hair 78.05% Oval Face 70.26%
Blurry 92.12% Pale Skin 89.44%
Brown Hair 72.42% Posed Photo 69.72%
Child 83.58% Receding Hairline 84.15%
Chubby 77.24% Rosy Cheeks 85.82%
Color Photo 95.50% Round Face 74.33%
Curly Hair 68.88% Round Jaw 66.99%
Double Chin 77.68% Semi-Obscured Forehead 77.02%
Environment 84.80% Senior 88.74%
Eye Width 90.02% Shiny Skin 84.73%
Eyebrow Shape 80.90% Sideburns 71.07%
Eyebrow Thickness 93.40% Smiling 95.33%
Eyeglasses 91.56% Soft Lighting 67.81%
Eyes Open 92.52% Square Face 81.19%
Flash Lighting 72.33% Straight Hair 76.81%
Frowning 95.47% Sunglasses 94.91%
Goatee 80.35% Teeth Not Visible 91.64%
Gray Hair 87.18% Teeth Visible 91.64%
Harsh Lighting 78.74% Visible Forehead 89.43%
High Cheekbones 84.70% Wavy Hair 64.49%
Indian 86.47% Wearing Hat 85.97%
Male 81.22% Wearing Lipstick 86.78%
Middle-Aged 78.39% White 91.48%
Mouth Closed 89.27% Youth 85.79%
Mouth Partially Open 85.13%

Table 1: Attribute Classification Results: We present accura-
cies of the 65 attribute classifiers trained using the procedure de-
scribed in Sec. 3.2. Example training images for the attributes in
bold are shown in Figure 3.

http://mturk.com


Figure 4: Similes for Training: Each simile classifier is trained
using several images of a specific reference person, limited to a
small face region such as the eyes, nose, or mouth. We show here
three positive and three negative examples for four regions on two
of the reference people used to train these classifiers.

be described as similar to Angelina Jolie’s, or their nose as
similar to Brad Pitt’s. Dissimilarities also provide useful
information – e.g., her eyes are not like Jennifer Aniston’s.

Figure 4 shows examples of regions selected from sub-
jects “R1” and “R2” in the training data. For each refer-
ence person in the training set, several simile classifiers are
trained for each face region (one per feature type), yielding
a large set of total classifiers.

We emphasize two points. First, the individuals chosen
as reference people do not appear in LFW or other bench-
marks on which we produce results. Second, we train simile
classifiers to recognize similarity to part of a reference per-
son’s face in many images, not similarity to a single image.

For each reference person, we train classifiers to distin-
guish a region (e.g., eyebrows, eyes, nose, mouth) on their
face from the same region on other faces. We choose eight
regions and six feature types from the set of possible fea-
tures described in Sec. 3.1 and train classifiers for each sim-
ile using the training procedure described in the previous
section. Each simile classifier is trained using at most 600
positive example face images of the reference person, and at
most 10 times as many negative examples, randomly sam-
pled from images of other people in the training set.

Obtaining Training Data: The data required for training
simile classifiers is simpler than for attribute classification:
for positive examples, images of a particular person; for
negative examples, images of other people. This training
data is part of the PubFig data set, described in Sec. 4.3.

3.4. Verification Classifier
In order to make a decision about whether two face images
I1 and I2 show the same person, we use the final classifier
D to compare the trait vectors C(I1) and C(I2) obtained
by one or both of the methods above.

We build our final classifier D based on some observa-
tions about our approach: (1) corresponding values Ci(I1)
and Ci(I2) from the ith trait classifier should be similar if
the images are of the same individual, (2) trait values are
raw outputs of binary classifiers (in the range [−1, 1]), and
so the signs of values should be important, and (3) our par-
ticular choice of classifier, SVMs, optimize for separating
data at the separation boundary, and so differences in val-
ues close to 0 are more important than differences between
those with greater absolute values.

Let ai = Ci(I1) and bi = Ci(I2) be the outputs of the
ith trait classifier for each face. For each of the n trait
classifiers, we compute a pair pi = (|ai − bi|, (ai · bi)) ·
g

(
1
2 (ai + bi)

)
, where the first term is the absolute value

of the difference between the two trait vectors and second
term is their product, and both are weighted by a gaussian
g with mean 0 and variance 1. These pairs are concatenated
to form the 2n dimensional vector that we actually classify:

v(I1, I2) = D(〈p1, . . . , pn〉) (2)

We found that changing the exact nature of D (e.g., using ei-
ther the difference or the product, or not applying the gaus-
sian weighting) did not affect accuracy by more than 1%.
Training D requires pairs of positive examples (both im-
ages of the same person) and negative examples (images of
different people). In our experiments, we use an SVM with
an RBF kernel for D.

4. Experiments
All of our experiments evaluate performance on a face ver-
ification task: given two images of faces, determine if they
show the same individual. For each computational exper-
iment, a set of pairs of face images is presented for train-
ing, and a second set of pairs is presented for testing. Not
only are the images in the training and test sets disjoint, but
there is also no overlap in the individuals used in the two
sets. High-level model selection choices (e.g., representa-
tion for the final classifier D) were made using a separate
training/test set (e.g., View 1 of the LFW set, as described in
the next section). Also, both our trait classifiers – attribute
and simile – were trained on data disjoint (by image and
identity) from the train and test sets in the experiments.

We explore performance on the LFW benchmark
(Sec. 4.1) and on our PubFig benchmark (Sec. 4.3), vary-
ing the set of traits used. In both cases, we use the detected
yaw angles to first flip images so that they always face left.
We also use six additional features for verification: the three
pose angles, the pose confidence, and two quality measures
based on image and file sizes. These boost performance
slightly, especially for off-frontal faces. Because the Pub-
Fig data set has more images per individual, we also evalu-
ate performance as a function of pose, lighting, and expres-
sion on that data set. Finally, we present results showing



Figure 5: Face Verification Results on LFW: Performance of
our attribute classifiers, simile classifiers, and a hybrid of the two
are shown in solid red, blue, and green, respectively. All 3 of
our methods outperform all previous methods (dashed lines). Our
highest accuracy is 85.29%, which corresponds to a 31.68% lower
error rate than the previous state-of-the-art.

human performance on the LFW set (Sec. 4.2). Unlike the
algorithms, humans were not shown any training data.

4.1. Labeled Faces in the Wild
The Labeled Faces in the Wild (LFW) [19] data set consists
of 13,233 images of 5,749 people, which are organized into
2 views – a development set of 2,200 pairs for training and
1,000 pairs for testing, on which to build models and choose
features; and a 10-fold cross-validation set of 6,000 pairs,
on which to evaluate final performance. We use View 1
for high-level model selection and evaluate our performance
on each of the folds in View 2 using the “image restricted
configuration,” as follows.

For each split, we train a final classifier D on the training
data and evaluate on the test data. Receiver Operating Char-
acteristic (ROC) curves are obtained by saving the classifier
outputs for each test pair and then sliding a threshold over
all values to obtain different false positive/detection rates.
An overall accuracy is obtained by using only the signs of
the outputs and counting the number of errors in classifica-
tion. The standard deviation for the accuracy is obtained by
looking at the accuracies for each fold individually.

Figure 5 shows results on LFW for our attribute clas-
sifiers (red line), simile classifiers (blue line), and a hy-
brid of the two (green line), along with several previous
methods (dotted lines). The accuracies for each method are
83.62%± 1.58%, 84.14%± 1.31%, and 85.29%± 1.23%,

Figure 6: Human Face Verification Results on LFW: Human
performance on LFW is almost perfect (99.20%) when people are
shown the original images (red line). Showing a tighter cropped
version of the images (blue line) drops their accuracy to 97.53%,
due to the lack of context available. The green line shows that
even with an inverse crop, i.e., when only the context is shown,
humans still perform amazingly well, at 94.27%. This highlights
the strong context cues available on the LFW data set. All of our
methods mask out the background to avoid using this information.

respectively.3 Each of our methods out-performs all previ-
ous methods. Our highest performance is with the hybrid
method, which achieves a 31.68% drop in error rates from
the previous state-of-the-art.

4.2. Human Performance on LFW
While many algorithms for automatic face verification have
been designed and evaluated on LFW, there are no pub-
lished results about how well people perform on this bench-
mark. Furthermore, it is unknown what characteristics of
the data set might make it easier or harder to perform the
verification task. To this end, we conducted several exper-
iments on human verification. To obtain this data, we fol-
lowed the procedure of [27], but on Amazon Mechanical
Turk, averaging the replies of 10 different users per pair
to get smoothed estimates of average human performance.
Thus, for the 6,000 image pairs in LFW, we gathered 60,000
data points from users for each of the three tests described
below (for a total of 240,000 user decisions). To create an
ROC curve for the results, the users were asked to rate their
confidence in labeling each pair of images as belonging to
the same person or not.

3Our face detector [26] was unable to detect one or more faces in 53 of
the 6,000 total pairs. For these, we assumed average performance.



Figure 7: The PubFig Data Set: We show example images for
the 140 people used for verification tests on the PubFig bench-
mark. Below each image is the total number of face images for
that person in the entire data set.

We first performed a test using the original LFW images.
The results are shown in red in Figure 6. At 99.20% accu-
racy, people are essentially perfect on this task. We now
look at tougher variants of this test.

The first variant is to crop the images tightly around the
face. We do this by blacking out most of the image, leaving
only the face visible (including at least the eyes, nose and
mouth, and possibly parts of the hair, ears, and neck). This
test measures how much people are helped by the context
(sports shot, interview, press conference, etc.), background
(some images of individuals were taken with the same back-
ground), and hair (although sometimes it is partially visi-
ble). The results are shown in blue in Figure 6. Performance
drops quite a bit to 97.53% – a tripling of the error rate.

To confirm that the region outside of the face is indeed
helping people with identification, we ran a second test
where the mask was inverted – i.e., we blacked out the face
but showed the remaining part of the image. Astonishingly,
people still obtain 94.27% accuracy, as shown by the green
line in Figure 6. These results suggest that automatic face
verification algorithms should not use regions outside of the
face, as they could artificially boost accuracy in a manner
not applicable on real data. (In all experiments involving
the attribute and simile classifiers, we only used features
from the face region, masking out the rest of the image.)

4.3. PubFig Data Set
As a complement to the LFW data set, we have created a
data set of images of public figures, named PubFig. This

Figure 8: Face Verification Results on PubFig: Our perfor-
mance on the entire benchmark set of 20,000 pairs using attribute
classifiers is shown in black. Performance on the pose, illumina-
tion, and expression subsets of the benchmark are shown in red,
blue, and green, respectively. For each subset, the solid lines show
results for the “easy” case (frontal pose/lighting or neutral expres-
sion), and dashed lines show results for the “difficult” case (non-
frontal pose/lighting, non-neutral expression).

data set consists of 60,000 images of 200 people. The larger
number of images per person (as compared to LFW) allows
us to construct subsets of the data across different poses,
lighting conditions, and expressions, while still maintaining
a sufficiently large number of images within each set. Fur-
ther, this data set is well-suited for recognition experiments,
an avenue we wish to pursue in future work.

Images in the data set were downloaded from the inter-
net using the person’s name as the search query on a variety
of image search engines, such as Google Images and flickr.
We ran face and fiducial point detection on the downloaded
images to obtain cropped face images [26]. Finally, we rec-
tified these images using an affine transform.

The first evaluation benchmark in PubFig is much like
the LFW one: face verification is performed on 20,000 pairs
of images of 140 people, divided into 10 cross-validation
folds with mutually disjoint sets of 14 people each.4 The
larger size and more varied image sources used to gather
the PubFig data set make this a tougher benchmark than
LFW, as shown by our performance on this test, displayed
in black in Figure 8.

The second benchmark in PubFig consists of subsets of
the full 20,000 pairs, divided by pose, lighting, and expres-
sion. The objective is to measure the sensitivity of algo-

4These people are disjoint from the 60 used for our simile classifiers.



rithms to these confounding factors. Training is performed
using the same data as in the first evaluation, but the testing
pairs are split into “easy” and “difficult” subsets for each
type of variation. Figure 8 shows results for pose (red),
lighting (blue), and expression (green), with “easy” results
plotted using solid lines and “difficult” using dashed lines.
For pose, “easy” is defined as pairs in which both images
have frontal pose (less than 10 degrees of pitch and yaw),
while the remaining pairs are considered “difficult.” Sim-
ilarly for lighting, pairs of frontally-lit images are “easy”
and remaining pairs are “difficult.” For expression, “easy”
means both images have a neutral expression, while “diffi-
cult” pairs have at least one image with a non-neutral ex-
pression, e.g., smiling, talking, frowning, etc.

All the data and evaluation benchmarks in Pub-
Fig (including fiducials and pose angles) are pub-
licly available at http://www.cs.columbia.edu/
CAVE/databases/pubfig/.

5. Discussion
We have presented and evaluated two approaches for face
verification using traits computed on face images – based
on describable attributes and our novel simile classifiers.
This is the first time such attributes have been applied to
face verification. Both approaches result in error rates sig-
nificantly lower (23.92% to 31.68%) than the state-of-the-
art for face verification on the LFW data set. Furthermore,
this is achieved using only the face region of images (with-
out the background or context). This is important because
our experiments measuring human performance show that
people perform suprisingly well (94.27%) at this task even
if the central portion of the face is artificially occluded.
However, humans perform quite well (97.53%) when shown
only a tight crop of the face, leaving a great deal of room for
improvement in the performance of algorithms for face ver-
ification in the unconstrained setting.

Finally, in order to further encourage research on face
verification and recognition, we introduce the new PubFig
data set, which is both larger and deeper than previous data
sets, allowing for exploration of subsets focusing on pose,
illumination, and expression changes.
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