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Abstract

We present methods for training high quality object de-

tectors very quickly. The core contribution is a pair of fast

training algorithms for piece-wise linear classifiers, which

can approximate arbitrary additive models. The classifiers

are trained in a max-margin framework and significantly

outperform linear classifiers on a variety of vision datasets.

We report experimental results quantifying training time

and accuracy on image classification tasks and pedestrian

detection, including detection results better than the best

previous on the INRIA dataset with faster training.

1. Introduction

Too much training data can make learning a bottleneck.

Quite suddenly this is becoming a real danger for computer

vision research. Efficient marketplaces for small increments

of human labeling effort such as Mechanical Turk [1, 37]

are making possible huge collections of images labeled and

verified by real people at a rate of multiple images per penny

as exemplified by image-net.org [21] a repository of

millions of image examples of the wordnet [10] hierarchy.

This complements a range of dataset collection efforts from

semi-automatic [2, 25, 34, 5, 31] with 10,000-600,000+ im-

ages to fully manual but unpaid [32] with 50,000+ labeled

objects to more traditional datasets [9, 13]. All of which

means that thousands to millions of training examples may

become the norm for object recognition.

In a sense this is already the case for training object de-

tectors. It is inexpensive to collect many positive images

of, say, pedestrians and images of non-pedestrians. Train-

ing for a high quality detector typically proceeds in rounds

of training a detector and then evaluating the detector on

datasets to identify additional false positives to use for fu-

ture training rounds. When detectors are run using a sliding

window at multiple scales there can be 100,000 or more po-

tential negative training examples per image.

This large amount of data dictates the algorithms that

are used. For image classification problems, recent re-

sults have made approximate nearest neighbor techniques

in high dimensional feature spaces, that require no training

but may learn parameters for hashing, efficient enough to

be used [38, 19, 35, 22] . Even these are too slow for de-

tection where boosted decision trees and linear classifiers

are the default [7, 40]. Contrast this with the most accurate

systems for object recognition in settings where efficiency

is less critical, usually obtained using kernelized support

vector machines (SVMs) that must compare a test image

(or region) to each support vector using one or more ker-

nels [3, 39, 12, 24, 6].

Recently we pointed out that many of these SVMs use

additive kernels and have classification functions with an

additive form that can be efficiently approximated and eval-

uated nearly as fast as a linear classifier [26]. That work did

not address the problem of efficiently training classifiers, in-

stead relying on standard training for kernelized SVM clas-

sifiers and then fitting fast additive classifier to match the

SVM classifier.

Our main contribution here is to show that classifiers

based on additive models can be trained directly in a max

margin framework extremely efficiently, and achieve ap-

proximately the same accuracy as first training an SVM and

then fitting an additive classifier to the resulting decision

function as was done in [26] while taking as little as 1% of

the training time. We achieve this remarkable speedup by

a special encoding of the learning problem that allows us

to take advantage of (our own modification of) recent tech-

niques for training linear classifiers [36, 8].

The result is something of a “free lunch” (or at least

very inexpensive) for computer vision researchers because

the combination of our fast training techniques with our

fast evaluation work make training and testing an additive

classifier only a small (constant factor) slower than train-

ing a linear classifier. At the same time the additive classi-

fiers produce error rates that are almost always significantly

lower than those for a linear classifier on computer vision

data.

In addition the optimization method used is derived from

PEGASOS [36] and employs stochastic sub-gradient de-

scent which allows us to present an “on-line” version of our

approach – streaming data from out of core — as well as a
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very efficient interactive training scheme for classifiers used

in detection.

We report experimental results quantifying training time

and accuracy on image classification tasks and pedestrian

detection, including detection results better than the best

previous on the INRIA [7] dataset.

2. Background

In this paper we train parametric additive classifiers di-

rectly, but some of our choices for representation and em-

bedding are motivated by considering SVMs both with lin-

ear and non-linear but additive kernels.

The history of the features and kernels used for pedes-

trian detection and image classification is quite complex

– we round up only the most closely related work. Em-

beddings that allow sub-linear search for similar distribu-

tions of features with respect to the Earth Mover’s distance

were introduced by Thaper & Indyk [20, 19] and later com-

bined with the intersection kernel (aka min-kernel) by Grau-

man et al. [12] to train accurate image classifiers. Lazebnik

et al. [24] refined the embedding by using multiple levels

for spatial coordinates, but not for other dimensions of fea-

tures. One level of Lazebnik’s simple features are very sim-

ilar to the Histogram of Oriented Gradient (HOG) feature

from Dalal and Triggs [7] which was carefully developed

to work well with a linear kernel for pedestrian detection

and has also been used as the basis of a structured predic-

tion approach to pedestrian detection [11]. The mutli-scale

features used by Maji et al. [26] fall between those of [24]

and [7] – in this work we refer to them as spHOG for spatial

pyramid histogram of gradient features.

Earlier Viola & Jones [40] developed their very success-

ful boosting algorithm for training a cascade for face detec-

tion. Boosting may seem unrelated to the kernel discussion

above, but recent work demonstrates random approxima-

tions to boosting using linear SVM training as an interme-

diate procedure [30, 29]. Furthermore if the weak learners

are additive so is a boosted function. Using a random selec-

tion of weak learners and our approach may be an effective

alternative to [30].

Additive models are well known in the machine learn-

ing community [15, 16, 14]. And efficient evaluation for

non-parametric kernelized SVMs with additive kernels is

addressed exactly in [17, 26] and approximately in [26]

which motivates much of our analysis of the encodings we

use to transform our problem to a form suitable for efficient

optimization. These fast evaluation strategies can acceler-

ate standard SVM training as in [41] which uses our previ-

ous work [26] to speed up stochastic gradient descent based

SVM training [23].

The data encoding strategy used in Sparse Network of

Winnows(SNoW) [42], can be seen as a special case of

our own and we include experiments that verify advan-

tages of the SNoW encoding strategy over linear in some

cases, while showing analytically and empirically that our

approach provides significantly better performance.

Our own optimization procedure generalizes that of the

very impressive PEGASOS [36] and in comparison exper-

iments we use LIBLINEAR [8] based on [18]. Both rep-

resent amazing progress in training efficiency. While the

stochastic nature of PEGASOS may be reminiscent of neu-

ral network approaches, differences are the max margin for-

mulation, and one key to its efficiency, the renormalization

at each step based on the regularization parameter. This

is what changes the iterations required for error bound ǫ
from O( 1

ǫ2 ) for other stochastic gradient descent methods

to O(1
ǫ ).

3. Overview

We are interested in learning classifiers based on additive

models. The decision functions are sign(f(x)) where

f(x) =
∑

i

fi(xi) (1)

We call fi the ith “coordinate function”, it operates on the

ith coordinate of x. Although additive models are often

non-parametric, here we are specifically interested in para-

metric coordinate functions that can be learned efficiently.

For labeled training data {(xk, yk)}k=1...n with the labels

yk ∈ {−1, +1} and the data xk ∈ R
d learning involves

finding the f that minimizes a cost function measuring both

the training error or loss ℓ and a regularization penalty R

f∗ = argminfR(f) +
1

n

∑

k

ℓ(yk, f(xk)) (2)

In the rest of the paper we will use the hinge loss

ℓ(yk, f(xk)) = max(0, 1 − ykf(xk)) motivated by the

generalization advantages of large margins, and by the (op-

tional) interpretation of f as the decision function of an

SVM with additive kernel.

We explore representations that transform Equation 2

into an efficiently solvable optimization. If w is a vector

of parameters specifying the parametric function fw then

we want to encode w as ŵ and a data point x as x̂ so that

fw(x) ≈ ŵ′x̂ where we emphasize that this may be ap-

proximate. After encoding we can write the optimization in

Equation 2 as

fw∗

= argminfwR(ŵ) +
1

n

∑

k

max(0, 1 − yk(ŵ′x̂k))

(3)

If each coordinate function fi(xi) = w′
ixi and R(w) =

λw′w then ŵ = w and x̂ = x and this is simply a lin-

ear support vector machine (without bias). More generally



we can use such a formulation whenever the fi are a linear

combination of a finite number of basis functions. In our

experiments fi are piecewise linear with uniformly spaced

breaks. This choice is motivated by simplicity and our anal-

ysis [26] showing that decision functions with that form can

effectively approximate the decision function of SVMs us-

ing the min kernel while being very efficient to evaluate,

but we emphasize that other spline functions can be used

easily1.

Depending on the form of the regularization function R
we can use different approaches for optimization. For in-

stance when R(ŵ) = λŵ′ŵ we can use an “off the shelf”

SVM package on the encoded data {(x̂k, yk)}. On the other

hand, for the “full” version of our approach – motivated by

regularization for kernelized SVMs – we present a modified

version of the the PEGASOS [36] stochastic sub-gradient

descent (with careful normalization) linear SVM solver that

can handle R(ŵ) = λw′Hw for positive definite H . Only

the case of H = I , the identity, is addressed by [36].

Section 4 goes into options for encoding in detail, includ-

ing analysis of representation error and the implications for

choices of regularization R. Then Section 5 presents our

modified version of PEGASOS. Section 6 presents experi-

mental results.

4. Encoding

We now consider options for the encoding described in

Section 3 as well as the related choice of rgularization. Most

of the discussion will be motivated by approximating the

embedding implied by a specific additive kernel, the his-

togram intersection kernel, Kint, also known as the inter-

section kernel or min kernel:

Kint(x, z) =
n
∑

i=1

min (x(i), z(i)) (4)

We note that this is not as restrictive as it might first ap-

pear. In fact, for any additive function f(x), given {f(xi)}
we can find {αi} and b so that f(x) =

∑

i αiKint(x, xi)+b
for all x ∈ {xi}. This coupled with the fact the min ker-

nel is conditionally positive definite (CPD) for real valued

x (Section 8) allows one to use min kernels to learn general

additive models on real valued features. CPD kernels can

be easily modified to yield Positive Definite (PD) kernels,

which correspond to shifting the origin of the RKHS and

share the same generalization properties of the correspond-

ing PD kernel[33, 4]. Other additive kernels like the −χ2

have similar properties. In practice differences between the

kernels tend not to matter on large training sets.

First we show explicitly that any SVM h(x) with support

vectors {vk} and additive kernel k(x, y) =
∑

i ki(xi, yi) is

1Different representations will change the effect of regularization.

additive:

h(x) =
∑

j

αjk(x, vj) + b (5)

=
∑

j

αj

∑

i

ki(xi, v
j
i ) + b (6)

=
∑

i

∑

j

αjki(xi, v
j
i ) + b (7)

=
∑

i

fi(xi) + b (8)

where fi(xi) =
∑

j αjki(xi, v
j
i ). For the histogram inter-

section kernel ki is simply min. It is sufficient to consider

encoding for each dimension separately (as the h is addi-

tive) so consider encoding two coordinate values x and z
both in [0, 1] for simplicity. In this case the goal of an en-

coding for the two is that min(x, z) = x̂′ẑ
One straight forward encoding is to choose a fixed dis-

cretization scale and represent the features in the “unary”.

Let N denote the number discrete levels and U(n) for

n ∈ Z denote the unary representation of the number n,

i.e. U(3) = 1, 1, 1, 0, 0, 0, U(6) = 1, 1, 1, 1, 1, 1, etc, and

R(.) denote the rounding function, then we define our first

feature encoding:

φ1(x) =

√

1

N
U (R (Nx)) (9)

Intuitively this encoding discretizes the feature into a fixed

set of levels and represents each feature using the unary rep-

resentation. The kernel can then be defined by

min(x, y) ≈ < φ1(x), φ1(y) >

= <

√

1

N
U (R (Nx)) ,

√

1

N
U (R (Ny)) >

=
1

N
< U (R (Nx)) , U (R (Ny)) >

An alternate representation is to use an encoding which

instead of rounding to the nearest bin, keeps more detailed

information about the values. We define the alternate rep-

resentation U ′(r) for any real number r >= 0 as the unary

representation, but replacing the first zero in the unary rep-

resentation of U(⌊r⌋) by α(r) = r − ⌊r⌋. As an example

U ′(3.5) = 1, 1, 1, 0.5, 0, 0

φ2(x) =

√

1

N
U ′ (Nx) (10)

The dot product then becomes:

min(x, y) ≈ < φ2(x), φ2(y) >

=
1

N
< U ′(Nx), U ′(Ny) >

We consider the approximation quality for both these linear

encodings in the next section.



4.1. Approximation Quality

We will present the worst case and average approxima-

tion errors for both these encodings. In both cases the max-

imum error (Emax
φ ) is:

Emax
φ (x, y) = |min(x, y)− < φ(x), φ(y) > | <

1

N
(11)

However we can be more precise about these errors for each

of the encodings. The min operation is symmetric so we

need only consider the case when x ≤ y and min(x, y) = x.

φ1 : Since x ≤ y we have R(Nx) ≤ R(Ny). So <
U(R(Nx)), U(R(Ny)) >= R(N(x)). Therefore the max

approximation error is:

Emax
φ1

(x, y) = max |x − R(Nx)/N | =
1

2N
(12)

φ2 : Since x ≤ y, there are two cases:

1. ⌊Nx⌋ < ⌊Ny⌋, in which case the embedding is exact.

< φ2(x), φ2(y) > = min(x, y)

2. ⌊Nx⌋ = ⌊Ny⌋ = Nm: Denote α(Nx) by a and

α(Ny) by b. Then we have min(x, y) = x = m + a
N ,

and

< φ2(x), φ2(y) > = < U ′(Nx), U ′(Ny) >

= min(x, y) +
1

N
(ab − a)

Notice that the dot product is always an underestimate

of min value as ab− a ≤ 0 with a, b ∈ [0, 1]. Also the

max approximation error is :

Emax
φ2

(x, y) = max
a≤b,a,b∈[0,1]

1

N
|ab − a| =

1

4N

If we assume that x, y are distributed uniformly in

[0, 1] × [0, 1], then we can also compute the expected error,

Eavg
φ1

= 1
4N , while Eavg

φ2
= 1

12N2 . This shows that the en-

coding error decreases with the number of bins and the φ2

encoding is twice as accurate as the φ1 encoding in terms of

max error, and significantly better if we care about the av-

erage error under a uniform distribution. Figure 4.1 shows

the kernel function for min, φ1 and φ2 for N = 10. Notice

how the φ2 encoding approximates the min much better.

4.2. Sparse Version of Encoding and Regularization

We saw that the min kernel can be approximated to

within ǫ using O(1/ǫ) bins for φ1 and O(1/
√

ǫ) bins for

φ2. Hypothetically we could train a linear SVM on those

encodings which would be an approximation the the SVM

on the original data using an intersection kernel. However

Figure 1. From left to right min(x, y), φ1(x)φ1(y) and

φ2(x)φ2(y) with N = 10. Note that the φ2 encoding is very

close to min.

these representations are dense, and training a linear SVM

on such dense representations becomes infeasible as the

number of dimensions becomes large. Instead we propose a

sparse representation for each of the embeddings given by:

φs
2(x) =

1√
N

(i : 1 − a, i + 1 : a) (13)

(a vector of all zeros except 1√
N

(1 − a) at position i and
1√
N

a at position i + 1) where a = α(Nx) as defined

earlier, and i = ⌈Nx⌉ and features are represented by

index : value pairs. The transform for φs
1 is the same

except both 1 − a and a are rounded to 0 or 1, resulting in

an encoding similar to that of SNoW [42] where they train a

linear SVM on these sparse features. The SNoW encoding

however does not preserve the underlying min based simi-

larity measure. We now propose an encoding for w (as in

Equation 3) that is compatible with using φs
{1,2} to encode

x.

If w ∈ R
N is a weight vector (for instance found by

fitting an SVM) on encoded data φ2(x) ∈ R
N and ws ∈

R
N+1 a weight vector on the same data encoded as φs

2(x) ∈
R

N+1. We want w such that w · φ2(x) = ws · φs
2(x). The

required relationship is

ws(i + 1) = ws(i) + w(i), and ws(1) = 0 (14)

An important point is how to compute the regularization

penalty on ws. Again if we were hypothetically training

a linear SVM on the dense φ2 encodings of the data the

regularization penalty would be w′w.

The corresponding regularization penalty for ws is then:

||w||2 =

N
∑

i=1

w(i)2 =

N
∑

i=1

(ws(i + 1) − ws(i))2 (15)

This can expressed as ws′Htris
s where Htri is tridiago-

nal, with the form:

Htri =

















1 −1 0
−1 2 −1

−1 2 −1
. . .
−1 2 −1

−1 1



















So far our discussion has dealt with only a single coordi-

nate. All encodings are done on a coordinate by coordinate

basis and appended. For instance if we use N = 20 di-

visions per coordinate and have 100 dimensional features

x ∈ R
100 then φs

2(x) ∈ R
2000 but has at most 2 × 100 non-

zero entries. Similarly Htri is 2000 × 2000 and all zeros

except for 100 blocks as described above along the diago-

nal. In what follows we only use the sparse encodings, so

φ1 will mean φs
1 and φ2 will mean φs

2.

5. Optimization

Once encoding the data is done and we have chosen a

regularization penalty of the form R(ŵ) = ŵ′Hŵ as de-

scribed above we need to find parameters ŵ∗ that minimize

the cost function c,

c(ŵ) =
λ

2
ŵ′Hŵ +

1

n

∑

k=1...n

max(0, 1− yk(ŵ′x̂k)) (16)

where λ is the regularization vs loss tradeoff. When H is

the identity this is simply optimization to fit a linear SVM.

In that case a standard linear SVM solver can be used, al-

though ideally one that can efficiently utilize a sparse repre-

sentation for x̂ such as [8, 36].

For our regularization motivated by the min kernel, H is

the tri-diagonal matrix described in Section 4.2, Htri. To

minimize equation 16 we modify the PEGASOS algorithm

originally designed to fit linear SVMs [36]. The original

analysis of PEGASOS depends on two aspects of the ob-

jective function c – first that c be strongly convex which is

true in our case as long as H is positive definite2, and sec-

ond that the optimum ŵ∗ has norm ŵ∗′ŵ∗ ≤ 1
λ , in our case

ŵ∗′Hŵ∗ ≤ 1
λ .

Next we show our modification of PEGASOS in its en-

tirety in Algorithm 1. Note that if H is replaced with the

identity matrix then this is exactly the PEGASOS algo-

rithm (on possibly encoded data). When we use the tri-

diagonal Htri and either encoding, φ1 or φ2 for x̂ as de-

scribed in Sec. 4.2 we call the algorithm “piecewise linear

sub-gradient descent”(PWLSGD).

Here S = {(xk, xy)}k=1...n is all of the training data,

At is a random subset of l data items chosen for the tth

iteration, and A+
t is the subset of these which violate the

margin constraint using estimate of weight vector ŵt in step

t. From [36] the error is c(ŵt) − c(ŵ∗) ≤ ǫ after Õ( 1
δǫλ)

steps with probability 1 − δ when l = 1 and after Õ( 1
ǫλ)

steps when l = n. Intermediate values of l fall between

2Our tri-diagonal H is not positive definite. Adding a small constant

(e.g. 0.01) to the first diagonal entry in each coordinate block the diagonal

makes it positive definite without effecting the accuracy on experiments.

Except for small l ≤ 3 using the original semidefinite H has no effect on

the convergence rate.

Algorithm 1 Our modification of PEGASOS (PWLSGD)

Require: S, T, λ > 0 and k > 0
initialize ŵ1 randomly, such that ŵ′

1Hŵ1 ≤ 1√
λ

for t = 1 to T do

Choose At ⊂ S, where |At| = l
Set A+

t = {(x̂, y) ∈ At : y 〈ŵ, x̂〉 < 1}
Set ηt = 1

λt

Set ŵt+ 1
2

= ŵt − ηt

(

λŵtH + 1
l

∑

(x,y)∈A+

t

yx̂
)

Set ŵt+1 = min

(

1, 1/
√

λ
ŵ

t+ 1
2

′Hŵ
t+ 1

2

)

ŵt+ 1
2

end for

these bounds. In practice the convergence depends on the

number of margin violations – basically the difficulty of the

classification problem.

We mention briefly some differences in computational

complexity from the original PEGASOS. Our variation

requires computing H ′ŵt and ŵ′
tHŵt for each update. For

tridiagonal H this costs roughly 3 times the computation

for H = I , hence the small multiple in computation time.

It is possible that more efficient implementations than our

current one, using loop unrolling and other techniques,

might be able to hide some of this added complexity.

In addition for the particular encodings φ1 and φ2 the

encoding pattern in our data x̂ is known and fixed (exactly

one or exactly two coefficients can be non-zero in each

coordinate block) so we can avoid using linked lists for

representing the data.

On-line and Interactive Learning

One significant benefit of basing optimization on a

stochastic sub-gradient descent method such as PEGASOS

is that we can perform learning in stages. For instance in

the process of training a detector it is evaluated on many

images, false positives (or missed detections) are added to a

new training set. After evaluating several hundred or thou-

sand of these a new classifier is trained [7]. We can actually

update the classifier by running additional steps of stochas-

tic gradient descent using the new data from each image. As

long as the distribution of images is randomized the conver-

gence estimates are very similar. This approach also avoids

the memory bottle-neck reported by [7].

The above assumes apriori labeled data, but this does not

need to be the case. A human could mark false positives and

missed detections in each successive image in an interactive

setting. Running a few iterations of training per image can

be done faster than humans can label.

6. Experimental Results

We present training time and testing accuracy numbers

for each of the proposed methods. We have a choice of



encoding for the features: no encoding, φ1, or φ2, and a

choice of learning algorithm : linear (w′w regularization)

using an off the shelf linear SVM solver (LIBLINEAR), in-

tersection kernel SVM (int. + LIBSVM) or a piecewise lin-

ear classifier (w′Htriw regularization) using our PWLSGD

algorithm on the encoded features. We present results on

Caltech 101, the Daimler Crysler Dataset and the INRIA

Pedestrian Dataset and show that both φ1 and φ2 encodings

outperform linear classifiers on the non-encoded features by

significant amount, and that the encoding and training can

be done in a small time compared to training an intersection

kernel SVM.

6.1. Caltech 101

Our first set of experiments are on the Caltech-101

dataset [9]. We use this dataset to show that the accuracy

using spatial pyramid match kernel introduced in [24] can

be matched using our embeddings. For each category we

select either 15 or 30 random examples for training and test

on a random set of at most 50 training examples as some

categories have fewer than 50 remaining for test. We report

numbers by averaging the class accuracy for 101 categories

using 5-fold cross validation. All the parameters for the

models are obtained using by optimizing the performance

on a fixed set of 15 training and 15 test examples per cat-

egory and we use the same parameters for both 15 and 30
training images. We use our own implementation of the

’weak features’ introduced in [24] and achieve an accuracy

of 50.15% and 56.49% , with 15 and 30 training examples

per class and one-vs-all SVM classifiers based on the spa-

tial pyramid match kernel. This kernel reduces to a min (or

intersection) kernel on histograms from each level concate-

nated together after suitable weighting. Table 1 shows the

cumulative training time and accuracies of various methods

on this dataset. Linear SVMs are the fastest but also per-

form the worst. The φ2 encoding with our piecewise linear

training algorithm achieves accuracy similar to the intersec-

tion kernel SVM at lower training times. Even a linear SVM

trained on the φ2 encoded features offers a good accuracy

improvement over a linear SVM trained on the raw features

at the cost of a small increase in training time. The accu-

racy using snow encoding (φ1) is quite a bit worse possibly

because of quantization.

6.2. Daimler Chrysler Pedestrian Dataset

Our second set of experiments are on the Daimler

Chrysler Pedestrian Benchmark dataset, created by Munder

and Gavrila [27]. The dataset is split into five disjoint sets,

three for training and two for testing. Each training set has

5000 positive and negative examples each, while each test

set has 4900 positive and negative examples each. We re-

port the training times and accuracies by training on two out

of three training sets at a time and testing on each of the test

sets. We use the same spatial pyramid of histograms of ori-

ented gradients features as before. Once again we optimize

the parameters on one split and keep the parameters fixed

for all the remaining runs. Table 2, shows the performance

of various algorithms on this dataset. Once again the φ2

encoded features with the piecewise linear training obtains

accuracy similar to the intersection kernel SVM requiring

only about 1% of its training time.

6.3. INRIA Pedestrians

We present results on the INRIA pedestrian dataset – the

largest dataset we use in this paper – training on up to about

50, 000 features of about 4000 dimensions. We describe

how we collect our training/test sets below.

Hard Training Data(HOG) : We use the Dalal and Triggs

implementation and collect all the “hard” training examples

after the first round of training of a linear SVM. The dataset

consists of 47, 327 features of 3780 dimension each, which

is the largest dataset we test our algorithms on. We report

accuracies by randomly splitting the dataset into 80% train-

ing and 20% testing.

Hard Training Data(spHOG) : We use an implementation

of the spatial pyramid HOG (spHOG) from [26] where an

intersection kernel on these features is used to train a SVM

classifier. The primary goal was to see if we could approx-

imate the classifier learned by the expensive SVM learning

framework using our fast approximation. There are 38, 862
features of 2268 dimensions. We report accuracies by ran-

domly splitting the dataset into 90% training and 10% test-

ing.

Figure 2, shows the classification accuracy of various

methods and features on this dataset. Linear SVM on the

HOG features performs quite well, and the intersection ker-

nel SVM offers a slight improvement in accuracy. On the

spHOG features the performance of the linear SVM is quite

poor and there is a significant improvement in accuracy

obtained by using the intersection kernel. In both these

datasets the intersection kernel SVM performance is closely

matched by the φ2 encoding with PWLSGD. Table 3 shows

the training times taken by the various training algorithms.

Training an intersection kernel SVM classifier on the entire

dataset using LIBSVM can take several hours, while our

technique takes less than two minutes.

Our performance for detection in the INRIA data is

shown in Figure 2. In order to produce these, the classi-

fier was run on a sliding window and non max suppression

to the results was applied according to the same procedures

described by Dalal and Triggs.
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15 examples 30 examples

Encoding Training Algorithm Training Time(s) Accuracy(%) Training Time(s) Accuracy(%)

identity LIBLINEAR 18.57 (0.87) 41.19 (0.94) 40.49 (0.80) 46.15 (1.33)

identity LIBSVM (int kernel) 844.13 (2.10) 50.15 (0.61) 2686.87 (4.30) 56.49 (0.78)

snow=φ1 LIBLINEAR 45.22 (1.17) 46.02 (0.58) 89.68 (0.93) 51.64 (1.02)

φ2 LIBLINEAR 42.31 (1.43) 48.70 (0.61) 101.97 (1.09) 54.79 (1.24)

φ2 PWLSGD 238.98 (2.49) 49.89 (0.45) 291.30 (1.98) 55.35 (0.72)

Table 1. Cumulative training time in seconds (stdev) and mean class accuracy (stdev) for various encodings and algorithms on Caltech 101

dataset using 5 fold cross validation.

Encoding Training Algorithm Training Time(s) Accuracy(%)

identity LIBLINEAR 1.89 (00.10) 72.98 (4.44)

identity LIBSVM (int. kernel) 363.10 (27.85) 89.05 (1.42)

snow=φ1 LIBLINEAR 2.98 (00.33) 85.71 (1.43)

φ2 LIBLINEAR 1.86 (00.04) 88.80 (1.62)

φ2 PWLSGD 3.18 (00.01) 89.25 (1.58)

Table 2. Training time in seconds (stdev) and accuracy (stdev) of various algorithms on the Daimler Chrysler Pedestrian dataset. Each

training set has 20, 000 features of 656 dimensions and it takes about 1.84(0.006) seconds to encode them.

7. Conclusion
We have shown how to train additive classifiers moti-

vated by [26] very efficiently – within a small multiple of

the time required by the very fastest linear SVM training

algorithms, shown both theoretically and in experiments.

Our resulting additive classifiers consistently perform better

than linear classifiers on vision tasks. In particular we can

train our piece-wise linear additive classifier for pedestrian

detection (based on spHOG features) which produces better

results than than Dalal & Triggs’ linear detector (based on

HOG) in only 76.13 seconds, more than 100 times faster

than the training used by [26]. Our fast learning algo-

rithm (PWLSGD) makes piece-wise linear models efficient

enough to be part of every vision researchers’ standard tool-

box of classifiers – we will release code with the publication

of this paper.
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φ2 PWLSGD 99.85s 76.12s

Table 3. (HOG) 47, 327 features of 3780 dimension. Encoding Time 87.22s. Dalal and Triggs use a modified SVMLIGHT which is faster

than LIBSVM, but still takes several minutes to train, slower than our PWLSGD on φ2 encoding which produces both better classification

using either HOG or spHOG (below) and better detection (Fig. 2 using spHOG). (LIBLINEAR failed to train on the raw HOG data)

(spHOG) : Training 38, 862 features of 2268 dimension using PWLSGD on the φ2 encoding takes only about 1% of the time taken to

train an intersection kernel SVM using LIBSVM, and performs as well for classification (see below).
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Figure 2. Left & Middle show classification results on the INRIA Pedestrian Hard Training Data (see Sec. 6.3 ). Left plot: HOG features

and middle plot: spHOG features. The HOG features were designed for a linear classifier, but there is still a small advantage to using

the IKSVM (int+ LIBSVM) or PWLSGD over linear. The spHOG features show a larger improvement from using IKSVM or PWLSGD,

and have slightly higher overall performance. Right shows Detection plots on the INRIA benchmark. We compare our detector, spHOG

features with IKSVM or PWLSGD, to Dalal and Triggs, HOG + (lin.) LIBSVM. All the detectors are run at a stride of 8× 8 pixels, and

scaleratio of 21/8. The correct detection criteria is ratio of bounding box intersection to union above 50%.
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8. Kint is Conditionally Positive Definite (CPD)
There are two requirements for Kint(x, y) =

∑

k min(xk, yk) where xk is the kth coordinate of x

to be CPD [33]. First Kint is clearly symmetric in x and

y. Second, let tk = mini xi
k and x̃i

k = xi
k − tk so that

whenever
∑n

i=1 ci = 0 we have:

n
∑

i=1

n
∑

j=1

cicj

(

∑

k

min(xi
k, xj

k)

)

=

n
∑

i=1

n
∑

j=1

cicj

(

∑

k

min(xi
k − tk, xj

k − tk) + tk

)

=

n
∑

i=1

n
∑

j=1

cicj
∑

k

min(xi
k − tk, xj

k − tk) +
∑

k

tk

n
∑

i=1

n
∑

j=1

cicj

=

n
∑

i=1

n
∑

j=1

cicj
∑

k

min(x̃i
k, x̃j

k) ≥ 0

As Kint(x, y) is positive definite [28] when x, y ≥ 0, and

∀i x̃i ≥ 0.


