
Classification using Intersection Kernel Support Vector Machines is Efficient ∗

Subhransu Maji
EECS Department
U.C. Berkeley

smaji@eecs.berkeley.edu

Alexander C. Berg
Yahoo! Research

aberg@yahoo-inc.com

Jitendra Malik
EECS Department
U.C. Berkeley

malik@eecs.berkeley.edu

Abstract

Straightforward classification using kernelized SVMs re-

quires evaluating the kernel for a test vector and each of

the support vectors. For a class of kernels we show that

one can do this much more efficiently. In particular we

show that one can build histogram intersection kernel SVMs

(IKSVMs) with runtime complexity of the classifier logarith-
mic in the number of support vectors as opposed to linear
for the standard approach. We further show that by precom-

puting auxiliary tables we can construct an approximate
classifier with constant runtime and space requirements,
independent of the number of support vectors, with negli-
gible loss in classification accuracy on various tasks. This

approximation also applies to 1 − χ2 and other kernels of

similar form.

We also introduce novel features based on a multi-level

histograms of oriented edge energy and present experiments

on various detection datasets. On the INRIA pedestrian

dataset an approximate IKSVM classifier based on these

features has the current best performance, with a miss rate

13% lower at 10−6 False Positive Per Window than the

linear SVM detector of Dalal & Triggs. On the Daimler

Chrysler pedestrian dataset IKSVM gives comparable ac-

curacy to the best results (based on quadratic SVM), while

being 15× faster. In these experiments our approximate
IKSVM is up to 2000× faster than a standard implementa-
tion and requires 200× less memory. Finally we show that
a 50× speedup is possible using approximate IKSVM based
on spatial pyramid features on the Caltech 101 dataset with

negligible loss of accuracy.

1. Introduction

Discriminative classification using Support Vector Ma-
chines (SVMs) and variants of boosted decision trees are
two of the leading techniques used in vision tasks rang-

∗This work is funded by ARO MURI W911NF-06-1-0076 and ONR
MURI N00014-06-1-0734

ing from detection of objects in images like faces [18, 27],
pedestrians [7, 16] and cars [20], multicategory object
recognition in Caltech-101 [1, 15], to texture discrimination
[30]. Part of the appeal for SVMs is that non-linear decision
boundaries can be learnt using the so called ‘kernel trick’.
Though SVMs have faster training speed, the runtime com-
plexity of a non linear SVM classifier is high. Boosted
decision trees on the other hand have faster classification
speed but are significantly slower to train and the complex-
ity of training can grow exponentially with the number of
classes [25]. Thus, linear kernel SVMs have become popu-
lar for real-time applications as they enjoy both faster train-
ing and classification speeds, with significantly less mem-
ory requirements than non-linear kernels due to the compact
representation of the decision function.

Discriminative approaches to recognition problems often
depend on comparing distributions of features, e.g. a ker-
nelized SVM, where the kernel measures the similarity be-
tween histograms describing the features. In order to evalu-
ate the classification function, a test histogram is compared
to histograms representing each of the support vectors. This
paper presents a technique to greatly speed up that process
for histogram comparison functions of a certain form – basi-
cally where the comparison is a linear combination of func-
tions of each coordinate of the histogram.

This more efficient implementation makes a class of ker-
nelized SVMs used in many of the current most successful
object detection/recognition algorithms efficient enough to
apply much more broadly, even possibly to realtime appli-
cations. The class of kernels includes the pyramid matching
or intersection kernels used in Grauman & Darell [11] ; and
Lazebnik et al. [15], and the chi squared kernel used by
Bosch et al. [1]; Varma & Ray [26]; and Chum & Zisser-
man [5], which together represent some of the best results
on the Caltech and Pascal VOC datasets. In addition the
decision functions learned are generalizations of linear de-
cision functions and offer better classification performance
at small additional computation cost. This allows improve-
ments in performance of object detection systems based on
linear classifiers such as those used by Dalal & Triggs [7]

 To Appear in IEEE Computer Vision and Pattern Recognition 2008, Anchorage

and Felzenszwalb et al. [9]. These ideas will be illustrated
with the histogram intersection kernel, and generalizations
will be introduced in Section 3.3.
The histogram intersection kernel [24], kHI(ha, hb) =

∑n
i=1 min (ha(i), hb(i)) is often used as a measurement of

similarity between histograms ha and hb, and because it
is positive definite [17] it can be used as a kernel for dis-
criminative classification using SVMs. Recently, intersec-
tion kernel SVMs (henceforth referred to as IKSVMs), have
been shown to be successful for detection and recognition,
e.g. pyramid match kernel [11] and spatial pyramid match-
ing [15]. Unfortunately this success typically comes at great
computational expense compared to simpler linear SVMs,
because non-linear kernels require memory and computa-
tion linearly proportional to the number of support vectors
for classification. 1.
Given feature vectors of dimension n and learned sup-

port vector classifier consisting of m support vectors, the
time complexity for classification and space complexity for
storing the support vectors of a standard IKSVM classifier
is O(mn). We present an algorithm for IKSVM classifi-
cation with time complexity O(n log m) and space com-
plexity O(mn). We then present an approximation scheme
whose time and space complexity is O(n), independent of
the number of support vectors. The key idea is that for a
class of kernels including the intersection kernel, the classi-
fier can be decomposed as a sum of functions, one for each
histogram bin, each of which can be efficiently computed.
In various experiments with thousands of support vectors
we observe speedups and space savings up to 2000× and
200× respectively, compared to a standard implementation.
On Caltech-101, one-vs-all classifiers on an average have
175 support vectors and the approximate IKSVM classifier
is about 50x faster.
The rest of the paper is structured as follows: In Section

2 we describe the background on state of the art in improv-
ing support vector classification speeds. In Section 3 we de-
scribe the key insight of the algorithm and present various
approximations. In Section 4 we present our multi-level his-
togram of oriented gradients based feature and experimental
results on on various datasets. Conclusions are in Section 5.

2. Background

Due to the immense practical importance of SVM based
classifiers, there has been a fair amount of research on re-
ducing their run time complexity. The complexity of classi-
fication for a SVM using a non linear kernel is the number
of support vectors× the complexity of evaluating the kernel
function (see equation 4). The later is generally an increas-
ing function of the dimension of the feature vectors. There

1It has also been shown recently that the number of support vectors
grow linearly with the number of training examples [23] so the complexity
can only get worse with more training data

are two general approaches to speeding up classification: re-
ducing the number of support vectors by constructing sparse
representations of the classifier, or reducing the dimension
of the features using a coarse to fine approach. We discuss
each of these briefly.

A class of methods start with the SVM classifier and
construct sparse representations using a small subset of the
support vectors [3, 19]. Instead of having a single approxi-
mation, one can have a series of approximations with more
and more support vectors to obtain a cascade of classifiers,
an idea which has been used in [22] to build fast face de-
tectors. Another class of methods build classifiers by hav-
ing a regularizer in the optimization function which encour-
ages sparseness, (e.g. L1-norm on the alphas) or pick sup-
port vectors in a greedy manner till a stopping criteria is
met [14]. These methods achieve accuracies comparable to
the full classifier using only a small fraction of the support
vectors on various UCI-Datasets. However, our technique
makes these methods irrelevant for intersection kernels as
we have an exact method which has a logarithmic depen-
dence on the number of support vectors.

The coarse to fine approach for speeding up the classifi-
cation is popular in many realtime applications. The idea is
to use simpler features and classifiers which are used to re-
ject easy examples quickly in a cascade. This idea has been
applied, to face detection [12] and recently to pedestrian de-
tection [28] achieve a speedup of 6-8 over a non cascaded
version of the detector. These kinds of speedups are orthog-
onal to the speedups we achieve using our methods. Thus
our technique together with a coarse to fine approach may
lead to even greater speedups.

There is not much literature on quick evaluation of the
decision function 2 and the approach closest in spirit to our
work is the work by Yang et al. [29] who use the Fast Gauss
Transform to build efficient classifiers based on the Gaus-
sian kernel. However their method is approximate and is
suitable only when the dimension of the features is small.

3. Algorithm

We first begin with a review of support vector machines
for classification. Given labeled training data of the form
{(yi,xi)}N

i=1, with yi ∈ {−1, +1}, xi ∈ Rn, we use a C-
SVM formulation [6]. For a kernel on data points, k(x, z) :
Rn × Rn → R, that is the inner product, Φ(x) · Φ(z), in
an unrealized, possibly high dimensional, feature space, the
algorithm finds a hyperplane which best separates the data
by minimizing:

τ(w, ξ) =
1

2
||w||2 + C

N
∑

i=i

ξi (1)

2See[13] for work with related kernels and on-line learning.

subject to yi((w · xi) + b) ≥ 1 − ξi and ξi ≥ 0, where
C > 0 is the tradeoff between regularization and constraint
violation. In the dual formulation we maximize:

W (α) =
N

∑

i=i

αi −
1

2

∑

ij

αiαjyiyjk(xi,xj) (2)

subject to: 0 ≤ αi ≤ C and
∑

αiyi = 0 (3)

The decision function is sign (h(x)), where:

h(x) =
m

∑

l=1

αlylk(x,xl) + b (4)

For clarity, in a slight abuse of notation the features
xl : l ∈ {1, 2, . . . , m} will be referred to as support vec-
tors. Thus, in general m kernel computations are needed
to classify a point with a kernelized SVM and all m sup-
port vector must be stored. For linear kernels we can do
better because, k(x, z) = 〈x, z〉, so h() can be written as
h(x) = 〈w,x〉 + b, where w =

∑m
l=1 αlylxl. As a result

classifying with a linear SVM only requires O(n) opera-
tions, andO(n) memory.

3.1. Fast Exact Intersection in O(n log m)

Nowwe show that it is possible to speed up classification
for IKSVMs. For feature vectors x, z ∈ Rn

+, the intersec-
tion kernel is k(x, z):

k(x, z) =
n

∑

i=1

min (x(i), z(i)) (5)

and classification is based on evaluating:

h(x) =
m

∑

l=1

αlylk(x,xl) + b (6)

=
m

∑

l=1

αlyl

(

n
∑

i=1

min (x(i), xl(i))

)

+ b (7)

The non linearity of min prevents us from ’collapsing’ in
a similar manner to linear kernels. This is in general true
for any non linear kernel including radial basis functions,
polynomial kernels, etc. Thus the complexity of evaluating
h(x) in the naive way is O(mn). The trick for intersection
kernels is that we can exchange the summations in equation
7 to obtain:

h(x) =
m

∑

l=1

αlyl

(

n
∑

i=1

min (x(i), xl(i))

)

+ b (8)

=
n

∑

i=1

(

m
∑

l=1

αlyl min (x(i), xl(i)))

)

+ b (9)

=
n

∑

i=1

hi(x(i)) + b (10)

Rewriting the function h(x) as the sum of the individual
functions, hi, one for each dimension, where

hi(s) =
m

∑

l=1

αlyl min (s, xl(i))) (11)

So far we have gained nothing as the complexity of com-
puting each hi(s) is O(m) with an overall complexity of
computing h(x) still O(mn). We now show how to com-
pute each hi in O(log m) time.
Consider the functions hi(s) for a fixed value of i. Let

x̄l(i) denote the sorted values of xl(i) in increasing order
with correspondingα’s and labels as ᾱl and ȳl. If s < x̄1(i)
then hi(s) = 0, otherwise let r be the largest integer such
that x̄r(i) ≤ s. Then we have,

hi(s) =
m

∑

l=1

ᾱlȳl min (s, x̄l(i)) (12)

=
∑

1≤l≤r

ᾱlȳlx̄l(i) + s
∑

r<l≤m

ᾱlȳl (13)

= Ai(r) + sBi(r) (14)

Where we have defined,

Ai(r) =
∑

1≤l≤r

ᾱlȳlx̄l(i), (15)

Bi(r) =
∑

r<l≤m

ᾱlȳl (16)

Equation 14 shows that hi is piecewise linear. Furthermore
hi is continuous because:

hi(x̄r+1) = Ai(r) + x̄r+1Bi(r)

= Ai(r + 1) + x̄r+1Bi(r + 1).

Notice that the functions Ai and Bi are independent of
the input data and depend only on the support vectors and
α. Thus, if we precompute hi(x̄r) then hi(s) can be com-
puted by first finding r, the position of s = x(i) in the
sorted list x̄(i) using binary search and linearly interpolat-
ing between hi(x̄r) and hi(x̄r+1). This requires storing the
x̄l as well as the hi(x̄l) or twice the storage of the stan-
dard implementation. Thus the runtime complexity of com-
puting h(x) is O(n log m) as opposed to O(nm), a speed
up of O(m/ log m). In our experiments we typically have
SVMs with a few thousand support vectors and the resulting
speedup is quite significant.

3.2. Fast Approximate Intersection in O(n)

We now show how to efficiently approximate the func-
tions hi in constant time and space independent of the num-
ber of support vectors, which leads to significant savings in
memory at classification time. We showed in Section 3.1

that hi(s) can be represented exactly using m + 1 piece-
wise linear segments. In our experiments we observe the
distributions of the support vectors along each dimension
tend to be smooth and concentrated3 and that the resulting
hi are also relatively smooth as seen in Figure 1. This al-
lows approximating hi with simpler functions that can be
evaluated quickly and require much less storage than the
exact method presented above. We consider both piecewise
constant and piecewise linear approximations with uniform
spacing between segments in both cases. Uniform spacing
allows computing hi(s) by a table lookup in the piecewise
constant approximation or two table lookups and linear in-
terpolation in the piecewise linear approximation. In prac-
tice we find that 30-50 linear segments is enough to avoid
any loss in classification accuracy yielding a huge decrease
in memory requirements.
As an example in our experiments using the Daimler

Chrysler pedestrian dataset, we routinely learn classifiers
with more than 5000 support vectors. The piecewise linear
approximations require only 30 values to obtain the same
classification accuracy in our experiments, using less than
1% of the memory.

3.3. Generalizations of Histogram Intersection

The algorithms we propose can be applied to more than
just the histogram intersection kernel. In fact whenever a
function can be decomposed as in equation 8 we can apply
the approximation speedup in Section 3.2. One example
is the generalized histogram intersection kernel [2] defined
by:

KGHI(x, z) =
n

∑

i=1

min
(

|x(i)|β , |z(i)|β
)

that is positive definite for all β > 0. Chappelle et al. [4]
observe that this remapping of the histogram bin values by
x → xβ , improves the performance of linear kernel SVMs
to become comparable to RBF kernels on an image classi-
fication task over the Corel Stock Photo Collection. In fact,
we can use

Kf
GHI(x, z) =

n
∑

i=1

min (f (x(i)) , f (z(i))) (17)

for arbitrary f taking non-negative values as a kernel, eval-
uate it exactly, and approximate it with our technique. An-
other example is the 1 − χ2 kernel, which has been used
successfully in [1] and could be approximated.

4. Experiments

We perform experiments to answer several questions;
(1) How much does the fast exact method speed up clas-

3This is interesting because the features themselves have a heavy tail
distribution.

sification? (2) What space savings does the approximate
method provide and at what cost in terms of the classifica-
tion performance? (3) What improvement in classification
performance does IKSVM offer over other kernel SVMs?
(4) Does the intersection kernel allow simpler features for
pedestrian detection?

In order to answer the first three questions we use the IN-
RIA and Daimler-Chrysler pedestrian dataset for detection
oriented experiments and Caltech-101 for classification. In
order to answer the fourth question, we introduce features
based on histograms of oriented edge energy responses and
test the framework on the two pedestrian detection datasets.
We compare our features to the features used by the state of
the art algorithms in each dataset in terms of both simplicity
and classification accuracy. The next section describes how
our features are computed.

4.1. Multi-Level Oriented Edge Energy Features

Our features are based on a multi-level version of the
HOG descriptor [7] and use histogram intersection kernel
SVM based on spatial pyramid match kernel introduced in
[15]. Our features are computed as follows: (1) We com-
pute the oriented edge energy responses in 8 directions us-
ing the magnitude of the odd elongated oriented filters from
[21] at a fine scale (σ = 1), with non max suppression
performed independently in each orientation. (2) The re-
sponse is then L1 normalized over all the orientations in
non overlapping cells of fixed size hn × wn (3) At each
level l ∈ {1, 2 . . .L}, the image is divided into non over-
lapping cells of size hl × wl, and a histogram feature is
constructed by summing up normalized response within the
cell. (4) The features at a level l are weighted by a factor cl

and concatenated to form our feature vector, which is used
to train an IKSVM classifier. The oriented edge energy his-
togram based features have been used successfully before
for gesture recognition [10]. Figure 2 shows the first three
stages of our feature pipeline.

Compared to the HOG features used in the linear SVM
based detector of Dalal and Triggs [7], our features are
much simpler as we do not have overlapping cells, Gaus-
sian weighting of the responses within a cell, or image nor-
malization, leading to a much smaller dimensional feature
vector. Our features also do not require the training step
used to learn the Local Receptive Field features [16], which
in conjunction with quadratic kernel SVMs give the best
results on Daimler-Chrysler pedestrian dataset. Our ex-
periments show the multi-level histogram of oriented edge
energy features lead to better classification accuracies on
INRIA dataset while being as good as the state of the art
on Daimler-Chrysler dataset, when used with IKSVM and
is significantly better than a linear classifier trained on the
same features. The next three sections describe the experi-
ments on these datasets in detail.

0.03 0.09
0

750

0.01 0.1
0

750

0.04 0.11
0

750

0.05 0.1
0

750

0.03 0.09
−0.04

0.37

0.01 0.1
−0.5

0.1

0.04 0.11
0

0.75

0.05 0.1
0

0.9

(a) (b) (c) (d)

Figure 1. Each column (a-d) shows the distribution of the support vectors values along a dimension with a Gaussian fit (top) and the

function hi(s) vs. s with a piecewise linear fit using 20 uniformly spaced points (bottom) of an IKSVM model trained on the INRIA
dataset. Unlike the distribution of the training data which are heavy tailed, the values of the support vectors tend to be clustered.

Figure 2. The three stage pipeline of the feature computation process. (1) The input grayscale image of size 64 × 128 is convolved with
oriented filters (σ = 1) in 8 directions, to obtain oriented energy responses. (2) The responses are then L1 normalized over all directions

in each non overlapping 16 × 16 blocks independently to obtain normalized responses. (3) Multilevel features are then extracted by
constructing histograms of oriented gradients by summing up the normalized response in each cell. The diagram depicts progressively

smaller cell sizes from 64 × 64 to 8 × 8.

4.2. INRIA Pedestrian Dataset

The INRIA pedestrian dataset was introduced in [7])
as an alternate to the existing pedestrian datasets (e.g.
MIT Pedestrian Dataset) and is significantly hard be-
cause of wide variety of articulated poses, variable ap-
pearance/clothing, illumination changes and complex back-
grounds. Linear kernel SVMs with histograms of oriented
gradients (HOG) features achieve high accuracy and speed
on this dataset [7]. In our experiments we use the multi-
level oriented edge energy features introduced in Section
4.1 with L = 4 levels, cell sizes of 64×64, 32×32, 16×16
and 8 × 8 at levels 1, 2, 3 and 4 respectively and block nor-
malization window size ofwn×hn = 16×16. The features
at a level l are weighted by a factor cl = 1/4(L−l) to obtain
a 1360 dimensional vector which is used to train an IKSVM

classifier.

The performance of the exact IKSVM classifier and
various approximations are shown in Figure 3. Firstly,
the performace of the IKSVM classifier using our features
is significantly better. We have a miss rate of 0.167 at
10−6 FPPW and 0.025 at 10−4 False Positive Per Window
(FPPW), an improvement of about 13% and 11% respec-
tively, over the Dalal and Triggs pedestrian detector. This is
without any tuning of hyperparameters like the number of
levels, level weights, choice of cell sizes, which is remark-
able. We observe that the piecewise linear approximation
with 30 bins is almost as accurate as the exact classifier. The
piecewise constant approximation however requires, thrice
as many bins to obtain similar accuracies. The detection re-
sults as a function of number of bins for piecewise linear
and piecewise constant approximations are shown in Fig-

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

0.01

0.02

0.05

0.1

0.2

0.5

INRIA DET − PieceWise Linear

false positives per window (FPPW)

m
is

s
ra

te

dalal−triggs

Exact

10 bins

30 bins

100 bins

300 bins

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

0.01

0.02

0.05

0.1

0.2

0.5

INRIA DET − PieceWise Const

false positives per window (FPPW)

m
is

s
ra

te

dalal−triggs

Exact

10 bins

30 bins

100 bins

300 bins

(a) (b)

0 0.05 0.1 0.15 0.2
0

0.2

0.4

0.6

0.8

1

False Positive Rate

D
e
te

ct
io

n
 R

a
te

DC DET − PieceWise Linear

exact
10 bins
30 bins
100 bins

0 0.05 0.1 0.15 0.2
0

0.2

0.4

0.6

0.8

1

False Positive Rate

D
e
te

ct
io

n
 R

a
te

DC DET − PieceWise Const

exact
10 bins
30 bins
100 bins

(c) (d)
Figure 3. Performance of our methods on INRIA pedestrian dataset (top row) and Daimler Chrysler pedestrian dataset (bottom row). De-

tection plots for an exact IKSVM and its (a) piecewise linear approximation (b) piecewise constant approximation. The performance of the

exact IKSVM is significantly better than the Dalal and Triggs detector. About 30 bins are required for the piecewise linear approximation
to have an accuracy close to the exact, while the piecewise constant do the same with 100 bins. Mean detection rate with error bars of the
exact IKSVM and its (c) piecewise linear approximation and (d) piecewise constant approximation. The error bars are plotted by training

on 2 out of the 3 training sets and testing on 2 test sets for a total of 6 results. The results are as good as the best published results on this
task. Once again 30 bins for a piecewise linear and 100 bins for a piecewise constant approximation are close to the exact.

ure 3. Table 1 compares the classification speeds of various
methods. The classification speed of our classifier is 6×
slower than a linear SVM using 1360 features. As a com-
parison a cell size of 8 × 8, stride of 8 × 8, block size of
16×16 and 9 orientation bins used to generate the curve us-
ing the HOG features has a dimension of 3780, about three
times as many features than ours. Thus, compared to a lin-
ear classifier with 3780 features the approximate IKSVM
classifier is only about 2x slower. Overall the approximate
IKSVM classifier is 1000× faster and requires 100× less
memory than the standard implementation of intersection
kernel SVM, with practically the same accuracy. Interest-

ingly our features are not the optimal features for a linear
SVM classifier, which has a miss rate of 0.5 at 10−4 FPPW.
Figure 4 shows a sample of the errors made by our detector
on this dataset.

4.3. Daimler Chrysler Pedestrian Dataset

We use the Daimler Chrysler Pedestrian Benchmark
dataset, created by Munder and Gavrila [16]. The dataset
is split into five disjoint sets, three for training and two for
testing. Each training set has 5000 positive and negative ex-
amples each, while each test set has 4900 positive and neg-

ative examples each. We report the ROC curves by training
on two out of three training sets at a time and testing on
each of the test sets to obtain six curves from which the
confidence intervals are plotted. The third training set is
meant to be used for cross validation for tuning of the hy-
perparameters but we do not use it. Due to small size of
the images (18 × 36), we only compute the multi-level fea-
tures with only three levels (L = 3) of pyramid with cell
sizes 18 × 18, 6 × 6 and 3 × 3 at levels 1, 2 and 3 respec-
tively. The block normalization is done with a cell size of
wn × hn = 18× 18. The features at level l are weighted by
a factor cl = 1/4(L−l) to obtain a 656 dimensional vector,
which is used to train an IKSVM classifier.
The classification results using the exact methods and ap-

proximations are shown in Figure 3. Our results are com-
parable to the best results for this task [16]. The experi-
ments suggests that relatively simpler features compared to
the LRF features when used in conjunction with IKSVMs
perform as well as other kernel SVMs. Table 1 compares
the classification speeds of various methods. The speedups
obtained for this task are significantly large due to large
number of support vectors for each classifier. The piece-
wise linear with 30 bins is about 2000× faster and requires
200× less memory, with no loss in classification accuracy.
The piecewise constant approximation on the other hand
requires about 100 bins for similar accuracies and is even
faster. We do not however optimize the process of com-
puting the features which on an implementation in Matlab
takes about 17ms per image. The time for classification
(0.02ms) is negligible compared to this. Compared to the
250ms required by the cascaded SVM based classifiers in
the paper, our combined time for computing the features
and classification is 15× lesser. Figure 4 shows a sample of
the errors made by our detector.

4.4. Caltech 101

Our third set of experiments are on Caltech-101 [8]. The
aim here is to show that existing methods can be made sig-
nificantly faster, even when the number of support vectors
in each classifier is small. We use the framework of [15]
and use our own implementation of their ’weak features’
and achieve an accuracy of 52% (compared to their 54%),
with 15 training and test examples per class and one-vs-all
classifiers based on IKSVM. The performance of a linear
SVM using the same features is about 40%. The IKSVM
classifiers on average have 175 support vectors and a piece-
wise linear approximation with 60 bins is 50× faster than
a standard implementation, with 3 additional misclassifica-
tions out of 1530 test examples on average (see Table 1).

5. Conclusions

The theoretical contribution of this paper is a technique
for exactly evaluating intersection kernel SVMs with run-

time logarithmic in the number of support vectors as op-
posed to linear for the standard implementation. Further-
more we have shown that an approximation of the IKSVM
classifier can be built with the same classification perfor-
mance but runtime constant in the number of support vec-
tors. This puts IKSVM classifiers in the same order of com-
putational cost for evaluation as linear SVMs.

Our experimental results show that approximate IKSVM
consistently outperforms linear SVMs at a modest increase
in runtime for evaluation. This is especially relevant for
detection tasks where a major component of training models
is evaluating the detector on large training sets.

Finally we introduced a multi-scale histogram of ori-
ented edge energy feature quite similar to HOG, but with a
simpler design and lower dimensionality. This feature and
IKSVM produce classification rates significantly better than
the linear SVM based detector of Dalal and Triggs, leading
to the current state of the art on pedestrian detection.

References

[1] A. Bosch, A. Zisserman, and X. Munoz. Representing shape with a
spatial pyramid kernel. In ICIVR, 2007.

[2] S. Boughorbel, J.-P. Tarel, and N. Boujemaa. Generalized histogram
intersection kernel for image recognition. In ICIP, Genova, Italy,
2005.

[3] C. J. C. Burges. Simplified support vector decision rules. In ICML,
pages 71–77, 1996.

[4] O. Chapelle, S. P. Haffner, and V. Vapnik. Support vector machines
for histogram-based image classification. IEEE Trans. on Neural
Networks, 10(5):1055–1064, May 1999.

[5] O. Chum and A. Zisserman. Presented at visual recognition chal-
lenge workshop. 2007.

[6] C. Cortes and V. Vapnik. Support-vector networks. Machine Learn-
ing, 20(3):273–297, 1995.

[7] N. Dalal and B. Triggs. Histograms of oriented gradients for human
detection. In CVPR, 2005.

[8] L. Fei-Fei, R. Fergus, and P. Perona. One-shot learning of object
categories. IEEE T. PAMI, 28(4):594–611, 2006.

[9] P. Felzenszwalb, D. McAllester, and D. Ramanan. A discriminatively
trained, multiscale, deformable part model. In CVPR, 2008.

[10] W. T. Freeman and M. Roth. Orientation histograms for hand ges-
ture recognition. In Intl. Workshop on Automatic Face and Gesture
Recognition, pages 296–301, 1995.

[11] K. Grauman and T. Darrell. The pyramid match kernel: Discrimina-
tive classification with sets of image features. ICCV, 2, 2005.

[12] B. Heisele, T. Serre, S. Prentice, and T. Poggio. Hierarchical clas-
sification and feature reduction for fast face detection with support
vector machines. Pattern Recognition, 36:2007–2017(11), Septem-
ber 2003.

[13] M. Herbster. Learning additive models online with fast evaluating
kernels. In Fourteenth Annual Conference on Computational Learn-
ing Theory, volume 2111, pages 444–460, 2001.

[14] S. S. Keerthi, O. Chapelle, and D. DeCoste. Building support vector
machines with reduced classifier complexity. JMLR, 7:1493–1515,
2006.

[15] L. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of features:
Spatial pyramid matching for recognizing natural scene categories.
In CVPR, 2006.

[16] S. Munder and D. M. Gavrila. An experimental study on pedestrian
classification. IEEE T. PAMI, 28(11):1863–1868, 2006.

Figure 4. Top two rows are a sample of errors on the INRIA pedestrian dataset and the bottom two are on the Daimler-Chrysler dataset.

For each set the first row is a sample of the false negatives, while the second row is a sample of the false positives.

Model parameters SVM kernel type fast IKSVMs
Dataset #SVs #features linear intersection binary search piecewise-const piecewise-lin

INRIA Ped 3363 1360 0.07±0.00 659.1±1.92 2.57±0.03 0.34±0.01 0.43±0.01
DC Ped 5474±395 656 0.03±0.00 459.1±31.3 1.43±0.02 0.18±0.01 0.22±0.00
Caltech 101 175±46 1360 0.07±0.01 24.77±1.22 1.63±0.12 0.33±0.03 0.46±0.03

Table 1. Time taken in seconds to classify 10,000 features using various techniques. #SVs is the number of support vectors in the classifier

and #features is the feature dimension. The next two columns show the speed of a linear kernel SVM with the same features and a standard

implementation of a intersection kernel SVM (IKSVM). The next three columns show the speeds using the speedup techniques we propose.

The numbers are averaged over various runs in the INRIA dataset, categories in the Caltech 101 dataset and six training and testing splits in

the Daimler-Chrysler dataset. The binary search based IKSVM is exact and has logarithmic dependence on the number of support vectors,

while the piecewise constant and linear approximations theoretically have a runtime independent of the number of support vectors. One can

see this from the fact that even with about 20× increase in the number of support vectors from Caltech 101 to INRIA pedestrian dataset,
the speeds of the fast IKSVM using binary search increases 1.5× while the speeds for the piecewise linear and constant approximations
are unchanged. The speed of a naive implementation is about 25× worse however. The approximate IKSVM classifiers are on an average
just 5-6 times slower than linear kernel SVM. The exact version using binary search is also orders of magnitude faster on the pedestrian
detection tasks than a naive implementation of the classifier. All the experiments were done on an Intel QuadCore 2.4 GHz machine with
4GB RAM.

[17] A. Odone F. Barla, A. Verri. Building kernels from binary strings for
image matching. IEEE T. Image Processing, 14(2):169–180, Feb.
2005.

[18] E. Osuna, R. Freund, and F. Girosi. Training support vector ma-
chines: an application to face detection. CVPR, 1997.

[19] E. E. Osuna and F. Girosi. Reducing the run-time complexity in sup-
port vector machines. Advances in kernel methods: support vector
learning, pages 271–283, 1999.

[20] C. Papageorgiou and T. Poggio. A trainable system for object detec-
tion. IJCV, 38(1):15–33, 2000.

[21] J. Perona, P.; Malik. Detecting and localizing edges composed of
steps, peaks and roofs. ICCV, pages 52–57, 4-7 Dec 1990.

[22] S. Romdhani, P. Torr, B. Scholkopf, and A. Blake. Computationally
efficient face detection. ICCV, 02:695, 2001.

[23] I. Steinwart. Sparseness of support vector machines-some asymptot-
ically sharp bounds. In NIPS, 2003.

[24] M. J. Swain and D. H. Ballard. Color indexing. IJCV, 7(1):11–32,
1991.

[25] A. Torralba, K. Murphy, and W. Freeman. Sharing features: efficient
boosting procedures for multiclass object detection. In CVPR, 2004.

[26] M. Varma and D. Ray. Learning the discriminative power-invariance
trade-off. In ICCV, October 2007.

[27] P. Viola and M. J. Jones. Robust real-time face detection. IJCV,
57(2):137–154, 2004.

[28] G. J. Z. Wei Zhang and D. Samaras. Real-time accurate object de-
tection using multiple resolutions. In ICCV, 2007.

[29] C. Yang, R. Duraiswami, N. A. Gumerov, and L. Davis. Improved
fast gauss transform and efficient kernel density estimation. In ICCV,
2003.

[30] J. Zhang, M. Marszalek, S. Lazebnik, and C. Schmid. Local fea-
tures and kernels for classification of texture and object categories:
A comprehensive study. In CVPRW, 2006.

