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Abstract

We propose an agent-based behavioral model of pedes-
trians to improve tracking performance in realistic scenar-
ios. In this model, we view pedestrians as decision-making
agents who consider a plethora of personal, social, and en-
vironmental factors to decide where to go next. We formu-
late prediction of pedestrian behavior as an energy mini-
mization on this model. Two of our main contributions are
simple, yet effective estimates of pedestrian destination and
social relationships (groups). Our final contribution is to
incorporate these hidden properties into an energy formu-
lation that results in accurate behavioral prediction. We
evaluate both our estimates of destination and grouping,
as well as our accuracy at prediction and tracking against
state of the art behavioral model and show improvements,
especially in the challenging observational situation of in-
frequent appearance observations – something that might
occur in thousands of webcams available on the Internet.

1. Introduction
Despite many recent advances in tracking algorithms,

effective tracking in realistic scenarios is still quite chal-
lenging. One common, yet less well studied scenario, is
surveillance of scenes with infrequent appearance observa-
tions – such as the sporadic frames one would get from the
thousands of webcams streaming pictures from around the
globe. In this case, the video stream consists of images that
are low resolution, low frame rate (sometimes every few
seconds), and display uncontrolled lighting conditions. Ad-
ditional confusion can result from occlusion between multi-
ple targets due to crowding. Having a strong prior on what
we observe will be essential for successful tracking in these
challenging situations. In this paper, we look at low frame
rate and crowded tracking scenarios with a focus on the be-
havioral model of pedestrians. This focus helps us both pre-
dict where people will go, and who they are with, and leads
to improved tracking results.

Pedestrians exhibit complex behavior from various so-

cial and environmental factors. For instance, a pedestrian
has his or her own destination in mind a comfortable walk-
ing speed, and plans a motion path that avoids other pedes-
trians and scene obstacles. Our goal in this paper is to build
a behavioral model that takes into account these higher level
decisions and which can easily be “plugged” into existing
appearance-based algorithms. With this in mind, we model
individual pedestrians as agents who make decisions about
velocity in the next time step, given factors from the scene
(e.g. other pedestrians to avoid or walk with, or obstacles).
We frame this decision process as minimization of an en-
ergy function that encodes physical condition, personal mo-
tivation, and social interaction.

One aspect of our approach is that we explicitly address
the problem of estimating hidden factors that might effect
a pedestrian’s decision making. One factor is the desired
grouping behavior – who a pedestrian is trying to walk with.
Another is the pedestrian’s desired destination in the scene.
Neither of these factors is usually known in the surveillance
setting. We estimate these hidden personal properties by
viewing them as a classification problem, predictable from
the trajectory of a pedestrian in the scene. In a surveillance
scenario, it is reasonable to assume that there is a set of
a few destinations in the scene, such as the entrance of a
building. This naturally limits the pattern of trajectories in
the scene. Also, people undergoing social interactions tend
to show a unique behavioral pattern compared with individ-
uals moving alone. We define a feature representation of
trajectories on top of our velocity observations, and predict
both of these hidden personal variables using efficient clas-
sification approaches.

The contributions of this paper are: 1) producing an
explicit energy function based behavioral model that en-
codes personal, social, and environmental decision factors,
2) data-driven estimation of hidden personal properties that
affect the behavior of pedestrians, and 3) use of our pro-
posed behavioral model for improved tracking performance
in low frame rate scenarios. We emphasize that our energy
function considers social interactions (grouping of pedestri-
ans as they walk, talk and interact), a factor which has only
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recently been explored in [9]. Our approach to social group
estimation is simpler, and more computationally efficient,
while remaining effective.

This paper is organized as follows. Section 2 describes
related work. Section 3 describes our comprehensive be-
havioral model, followed by parameter learning in Section
4. Section 5 details the estimation method of hidden per-
sonal properties using trajectory features. Section 6 de-
scribes the quantitative evaluation of our behavioral model
and property estimation with application in tracking, and
Section 7 concludes this paper.

2. Related work

The pedestrian behavior model has been extensively
studied in the fields where simulation plays an important
role, such as graphics [5], and civil engineering [10] [11],
or where accurate prediction is required, such as robotics
[13, 6]. In most crowd simulation contexts, the base model
dates back to the classic social force model [4], in which
the behavioral factors are assumed to give an equation that
drives pedestrians in analogy to physics. In computer vi-
sion, the attempt to detect abnormal events with the social
force model is reported in [7].

[12], several social factors are known to affect a person’s
behavior. Antonini’s work [1] is one of the earliest in com-
puter vision to take advantage of the rich behavioral infor-
mation in a tracking application. The discrete choice model
in their work assumes that individual pedestrians make a
choice from a discrete set of velocity options at each time
step based on social and environmental factors in the scene.
The assumption of discretized choice allows efficient pre-
diction with analytical solutions despite the large number of
factors considered in the model [1, 10]. However, due to the
nature of the discretization, the behavioral prediction tends
to show artifacts when metric is continuous. In contrast,
continuous models have been recently proposed by [8, 11].
An advantage of continuous model is the flexibility of con-
structing complex models, however, previous work focuses
on individual motivation of the behavior [8, 11], and the
only social context is collision avoidance.

of social interaction in behavioral model. Social inter-
action in the pedestrian group began to be studied only re-
cently in computer vision [2, 3, 9]. A tracking application is
included in [9]. There the problem is formulated as a simul-
taneous discrete assignment of hypothetical tracks and esti-
mation of social relationships based on observations over a
short time frame using a CRF. The CRF formulation indi-
rectly encodes a behavioral model. Our focus is to build an
explicit behavioral model which can exploit the rich behav-
ioral context in social interactions, yet remain straightfor-
ward and efficient enough to be plugged into other tracking
approaches as a module.

3. Behavioral model
3.1. An energy function for pedestrian navigation

Our behavioral model is based on an energy function for
each pedestrian that expresses the desirability of possible
directions of motion for the pedestrian. The energy func-
tion combines terms for the various factors that influence
the pedestrian’s choice. These are explained in this section.
We optimize the parameters of this model so that choos-
ing the minimum energy direction accurately predicts the
behaviors of pedestrians in labeled training data, and then
evaluate the performance of the model on previously unseen
test data. The fitting procedure is described in Section 3.2.

At each time step t, pedestrian i is represented by a state
variable s(t)

i = (p
(t)
i ,v

(t)
i , u

(t)
i , z

(t)
i , A

(t)
i ), where p(t)

i , v(t)
i ,

u
(t)
i and z

(t)
i are the position, velocity, preferred speed and

chosen destination, respectively, of pedestrian i at time t,
while Ai is the set of pedestrians in the same social group
as pedestrian i, including himself. Note that u(t)

i , z
(t)
i

and Ai are not observable and usually assumed static, i.e.,
u

(t)
i = ui, z

(t)
i = zi and A(t)

i = Ai are time-invariant1.
As in [8], our model assumes that each pedestrian makes a
decision on the velocity v

(t+∆t)
i based on various environ-

mental and social factors in the scene, and we model this
decision-making process as the minimization of an energy
function.

Our energy function EΘ, where Θ =
{λ0, λ1, λ2, λ3, λ4, σd, σw, β} denotes a set of param-
eters, is as follows and consists of a linear combination2 of
six components:

EΘ(v; si, s−i) ≡λ0 Edamping(v; si)+

λ1 Espeed(v; si)+

λ2 Edirection(v; si)+

λ3 Eattraction(v; si, sAi)+

λ4 Egroup(v; si, sAi)+

Ecollision(v; si, s−i | σd, σw, β), (1)

where we define sAi
to be a set of state variables of the

pedestrians in i’s social group Ai, and s−i to be the set of
states of other pedestrians except i. From now on, the time
step t is dropped from each variable for notational simplic-
ity.

The following paragraphs provide a description of each
of the six components of the energy function EΘ.

Damping. The damping term penalizes sudden changes
in the choice of velocity, relative to the current state:

Edamping(v; si) ≡ |v − vi|2 . (2)

1Sec. 4 shows how we automatically estimate these.
2The coefficients are relative, so we fix the collision coefficient to 1.
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Speed. Pedestrians have their own preferred speed de-
pending on physical state, culture or scene environment.
The speed term penalizes choosing a speed that deviates
from the (hidden) preferred speed ui of the pedestrian i:

Espeed(v; si) ≡ (ui − |v|)2 . (3)

Direction. The direction term concerns the choice of the
correct direction towards the goal. We model this by using
the negative cosine between the velocity choice v and the
direction to the destination zi from the current location pi:

Edirection(v; si) ≡ −
zi − pi
|zi − pi|

· v

|v|
. (4)

Attraction. People in the same group tend to stay close
to each other while moving together. To capture this effect,
we define the attraction term as

Eattraction(v; si, sAi
) ≡∑

j∈Ai−{i}

(
vi

|vi| ·
vj

|vj |

)(
∆pij

|∆pij | ·
v
|v|

)
(5)

where ∆pij = pi−pj . The second factor penalizes choos-
ing a forward direction that is far from another pedestrian
j ∈ Ai − {i} in the group Ai of pedestrian i. The first fac-
tor is a weight that flips this attraction effect if person j is
moving in a direction opposite to i.

Grouping. People in the same group tend to walk at sim-
ilar speeds and directions. The grouping term penalizes ve-
locity choices that are different from the average velocity of
the group:

Egroup(v; si, sAi
) ≡ |v − v̄Ai

|2 (6)

where v̄Ai
≡ 1
|Ai|

∑
j∈Ai

vj . (7)

Note that the social group Ai always includes pedestrian i.
If Ai is a singleton, the grouping term has the same effect
as the damping term.

Collision. Pedestrians try to avoid collisions with obsta-
cles or other pedestrians. We use the model described in [8]
to capture this effect:

Ecollision(v; si, s−i | σd, σw, β) ≡∑
j 6=i w(si, sj) exp

(
−d

2(v,si,sj)

2σ2
d

)
. (8)

Note that this term requires three parameters σd, σw, and
β. The factor w(si, sj) is a weight coefficient, while the
function d(v, si, sj) in the exponent is the expected mini-
mum distance between pedestrian i and j under a constant-
velocity assumption [8]:

w(si, sj) ≡ exp

(
−|∆pij |2

2σ2
w

)
·
(

1

2

(
1− ∆pij
|∆pij |

· vi
|vi|

))β
(9)

d(v, si, sj) ≡
∣∣∣∣∆pij −

∆pij · (v − vj)

|v − vj |2
(v − vj)

∣∣∣∣ (10)

The first term in (9) assigns less influence to distant pedes-
trians, while the second term in (9) assigns less weight to
pedestrians outside the view of pedestrian i.

3.2. Dynamical model

We now describe how to fit the parameters of the model.
Recall our assumption that the personal properties of indi-
vidual pedestrians are static, i.e., u(t)

i ≈ ui, z
(t)
i ≈ zi, and

A
(t)
i ≈ Ai. With this assumption, and our energy func-

tion encoding pedestrian velocity preferences (defined in
the previous subsection), the state transition of pedestrian
i from time t to t+ ∆t is defined by the following dynami-
cal system:

p
(t+∆t)
i = p

(t)
i + v

(t+∆t)
i ∆t (11)

v
(t+∆t)
i = argmin

v
EΘ(v; s

(t)
i , s

(t)
−i) . (12)

We use a gradient descent algorithm to solve for the minima
of the energy function.

We learn the 8 parameters Θ =
{λ0, λ1, λ2, λ3, λ4, σd, σw, β} required by our energy
function from previously annotated data.

In order to make behavioral predictions with our model,
we need to deal with the fact that personal properties ui, zi
and Ai are unobservable and thus unavailable at prediction
time. To deal with this problem, we estimate the personal
properties from the past history of states, as described in
Section 5.

We learn optimal parameters Θ∗ by fitting the energy
function to fully observed trajectories in the labeled train-
ing data. During training, while predicting the behavior of
an individual pedestrian, we fix the states of the other pedes-
trians to the ground truth. Let us denote the ground truth
data by s̃i. We define the learning problem as computing

Θ∗ ∈ argmin
Θ

∑
i

∑
t

∣∣∣p̃(t+∆t)
i − p

(t+∆t)
i (s

(t)
i , s̃

(t)
−i,Θ)

∣∣∣2 .

(13)

This is a complex nonlinear optimization problem and
computing a global optimum is hard. We use a variant of
simplex algorithm, with restarts, to solve for a local minima.

We use eth and hotel sequences from [8] as training
data. The dataset includes a total of 750 pedestrians with
15,452 observations of positions under 2.5 frames per sec-
ond. To estimate the personal properties, we assume the
preferred speed of a pedestrian is the average speed over
that person’s trajectories. The destination is set to be one of
4-5 manually labeled positions outside the scene according
to the direction and position at the end of the trajectories.
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The social group is also manually labeled. We model scene
obstacles as virtual pedestrians with zero-velocity, and man-
ually set these positions along the actual scene obstacles.
We sub-sampled at most 12 consecutive tracks (4.8 seconds)
every 4 frames (1.6 seconds) for each pedestrian track from
each dataset. Then we use these tracks in (13) to learn the
parameters.

4. Estimation of personal properties
Our model requires knowledge of the hidden personal

properties, preferred speed, ui, destination, zi, and social
grouping, Ai, for behavioral prediction. As described in
more detail in this section, we estimate these variables using
the trajectory’s history information available at prediction
time t.

4.1. Preferred speed

We assume a mean speed of past Npast steps as the pre-
ferred speed of the person.

A simple, but ineffective alternative is to assume a single
global speed for all pedestrians. According to pedestrian
speed statistics in [10], a typical person walks around 1.3
m/s. However, this approach ignores individual differences
and seems too rough in complex scenes (e.g., sometimes a
person slows down to look around, or walks together with
kids).

4.2. Destination

The key observation here is that a scene contains only a
few types of trajectories. For example, if a scene is a street
laying from left to right, we observe persons either passing
from left to right or right to left. In this case, it is easy
to see that a person walking toward the right side also has
his destination in the right side of the scene. This simple
assumption might not work if the scene is more complex
and has more potential destinations. But looking at certain
previous steps in someone’s past motion gives us a strong
cue as to where his destination is in the scene.

We generalize this observation to the destination predic-
tion problem. Given a past trajectory r(t)

i = {s(t′)
i }t′≤t, we

want to predict a destination zi ∈ {Z1, Z2, Z3, ..., ZK} of
the pedestrian i.

We introduce a trajectory feature function fdest(r
(t)
i ) and

train a K-class classifier Cdest to predict the destination:

ẑ
(t)
i = Cdest(fdest(r

(t)
i )) . (14)

The feature representation of the trajectory is a concate-
nation of the normalized histograms of position pi, speed
|vi| and direction arctan(vi). In our experiments, position,
speed and direction histograms are discretized into 7-by-7,
7 and 9 bins, respectively. All the histograms have equally
spaced bins.

We adopt linear support vector machine (SVM) as a clas-
sifier for this task. It is generally preferred to use as lit-
tle trajectory history information as possible to estimate the
destination, especially when using behavioral prediction in
real time applications. We evaluate the estimation perfor-
mance with respect to number of past step used to compute
features in the next section.

4.3. Social groups

Pedestrians walking in groups tend to behave differently
from pedestrian walking alone. Pedestrian in groups tend
to walk at the same speed while keeping certain distance
between each other. As attempted in [9], we also try to
estimate social groups in a scene, but using a simple yet
more efficient approach.

The task is to decide whether a pedestrian i and another
pedestrian j are in the same group. More precisely, given
a pair of past trajectories (r

(t)
i , r

(t)
j ), we want to assign a

binary label yij ∈ {+1,−1} that indicates whether they are
in the same group (+1) or not (−1). This is a binary clas-
sification problem over pairwise trajectories. By defining a
feature function fgroup(r

(t)
i , r

(t)
j ), we can train a classifier

Cgroup from training data:

ŷij = Cgroup(fgroup(r
(t)
i , r

(t)
j )) . (15)

The predicted social group is then given by

Âi = {j|ŷij = +1, j 6= i} ∪ {i} . (16)

We use the following quantities as features:

1. normalized histogram of distance |pi − pj |,
2. normalized histogram of absolute difference in speed
||vi| − |vj ||,

3. normalized histogram of absolute difference in direc-
tion | arctan(vi)− arctan(vj)|,

4. normalized histogram of absolute difference in veloc-
ity direction and relative position | arctan(pj − pi)−
arctan(vi)|, and

5. time-overlap ratio |T (t)
i ∩ T (t)

j |/|T
(t)
i ∪ T (t)

j |, where

T
(t)
i = {t′|t′ ≤ t, s

(t′)
i 6= ∅}, i.e., a set of past time

steps in which pedestrian i appears.

As with destination estimation, we use an SVM classi-
fier. In the next section, we show the accuracy of prediction
as a function of the number of past steps used to produce
the feature values.

5. Evaluation
5.1. Datasets

For evaluation, we used the eth and hotel sequences
from [8], and the zara01, zara02 and stu03 sequences
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Table 1. Total number of annotations in datasets

Dataset eth hotel zara01 zara02 stu03
Frames 1448 1168 866 1052 541

Pedestrians 360 390 148 204 434
Groups 243 326 91 140 297

Observations 8908 6544 5024 9537 17583
Destinations 5 4 4 4 4

Obstacles 44 25 34 34 16

from [5]. These sequences have annotated positions. We
manually added the annotations of scene obstacles, destina-
tions and social groups. Table 1 summarizes the number of
annotations in the different datasets. All the sequences have
25 fps, and annotations are given every 0.4 seconds.

We use all the sequences to evaluate our personal-
property estimator. For the experiments on behavioral pre-
diction and tracking, we use eth and hotel to learn pa-
rameters, and zara01, zara02 and stu03 to evaluate.

5.2. Personal-property estimation

To evaluate the performance of destination and group
estimation, we ran a 3-fold cross-validation on pre-
diction accuracy. In this experiment, we do this by
subsampling tracks {s(t′)

i }t−Npast∆t≤t′≤t for Npast =
{0, 1, 2, 4, 8,∞}, 3 every 4 frames for each person i. The
sampled trajectories are then uniformly split into the 3 sets
used for the 3-fold cross-validation. Table 2 shows the aver-
age accuracy of destination prediction while Table 3 shows
the average precision and recall of social group prediction,
both as a function of the number of past steps used to com-
pute trajectory features.

The experimental results in Table 2 suggest that the diffi-
culty of destination estimation depends strongly on the type
of scene. Typically, confusion occurs when trajectories hav-
ing different destinations share a sub-trajectory. In fact, our
estimation is worse in the eth and hotel datasets than in
the zara01 and zara02, because the initial part of tra-
jectories in the former datasets look very similar, even if
those trajectories later diverge as pedestrians move. The es-
timation in stu03 dataset is worst because, in that dataset,
many people standing at the same location, which confuses
our predictor. Note that in the annotation we automatically
assigned the closest destination located outside the scene to
pedestrian temporarily standing. Also, we can observe that
the number of past steps used to compute trajectory features
has almost no influence on prediction accuracy. Rather, it is
remarkable that the estimation using only the current state
s

(t)
i already gives reasonable performance. This indicates

that the location and velocity of the pedestrian in the current

3By Npast = ∞ we mean all past steps available.

Table 2. Destination prediction accuracy
Npast

Dataset 0 1 2 4 8 ∞
eth 75.9 77.2 77.4 77.8 78.2 78.2
hotel 71.2 70.5 70.7 70.3 70.7 71.1
zara01 96.2 96.0 96.0 96.0 95.8 96.7
zara02 82.5 82.5 82.3 82.5 82.4 86.4
stu03 65.6 66.8 66.2 66.8 67.3 66.7

Table 3. Social group prediction precision and recall

Npast

Dataset 0 1 2 4 8 ∞

Pr
ec

is
io

n

eth 78.6 79.0 79.5 80.3 82.0 83.0
hotel 86.5 86.1 86.5 86.5 88.5 91.3
zara01 92.6 90.4 93.6 93.3 94.3 97.2
zara02 67.4 67.5 67.6 68.0 68.5 88.8
stu03 70.1 71.6 72.4 74.3 75.9 80.5

R
ec

al
l

eth 80.2 78.8 79.4 79.3 78.7 77.8
hotel 91.0 95.3 94.4 95.3 95.9 95.4
zara01 75.8 78.1 76.6 76.1 76.2 74.9
zara02 85.0 86.5 87.7 88.3 90.3 92.3
stu03 73.8 73.0 73.8 74.6 77.0 77.0

scene already provides enough information to guess where
that person will move in the future.

Table 3 shows that the social group can be estimated with
reasonably well, regardless of scene environment. Also, in
this case, having more past information does indeed im-
prove estimation performance.

Note that in this experiment we predict a label of a di-
rectional link label between two persons but do not consider
the symmetric and transitive properties of social relations in
groups. Imposing these properties via additional constraints
might further improve estimation performance.

5.3. Behavioral prediction

To evaluate the performance of behavioral prediction, we
calculated the average displacement of the predicted posi-
tion of a single pedestrian from the ground truth position.
As in parameter learning, in this experiment, we also fix the
states of other pedestrians to the ground truth. We evalu-
ated the error in the zara01, zara02 and stu03 datasets
using the parameters learned from the eth and hotel
datasets. Because the destination estimator requires scene
specific data, we performed 2-fold cross-validation by split-
ting each dataset into a first and a second half (correspond-
ing to the initial and last period of time in the video).

Similarly to parameter learning, we subsampled at most
12 consecutive tracks (4.8 seconds) every 4 frames (1.6 sec-
onds) for each pedestrian track, and computed prediction
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Table 4. Error in behavioral prediction (m)
Dataset

Method zara01 zara02 stu03
LIN 0.442 0.396 0.556
LTA 0.372 0.376 0.536
LTA+D 0.391 0.378 0.546
ATTR 0.346 0.387 0.532
ATTR+D 0.349 0.373 0.509
ATTR+G 0.347 0.386 0.516
ATTR+DG 0.352 0.367 0.495

error using the average of the objective function given in
(13). Tracks in the training set are then used to build per-
sonal property estimators. We allow estimators to use at
most 5 past steps of information to compute features.

In this evaluation, we compared the constant speed
model (LIN); the collision avoidance model of [8] with
ground truth destination (LTA) and with predicted destina-
tion (LTA+D); and our model with ground truth (ATTR),
predicted destination (ATTR+D), predicted social groups
(ATTR+G) and predicted destination and social groups
combined (ATTR+DG). The preferred speed is set to
ground truth in all cases. Table 4 summarizes the average
displacement (in meters) from ground truth at each predic-
tion. The result is the average of a 2-fold cross-validation.

Both LTA and our model perform better than LIN in all
cases, with or without ground truth. We can also see that us-
ing predicted destination and social groups does not degrade
the error significantly, and in fact, their combination with
our behavioral model produces better results in the zara02
and the students03 datasets. This may seem to contra-
dict our intuition, because the model may be using incor-
rectly predicted destinations. However, those datasets have
many crowded scenes in which often pedestrians stop walk-
ing to chat or look around. In that case, predicting a des-
tination outside the scene apparently is unreasonable. We
believe our predictions dynamically provided more reason-
able destinations for such tricky pedestrians and thus better
describe the actual situation.

Figure 1 shows an example of the prediction over 12
steps in the zara01 dataset. A subject is moving towards
the rightside of the scene with another person, and is about
to pass by another group moving in the opposite direction.
The LIN model loses its track from the ground truth. Both
LTA and our model track the ground-truth pedestrian path
more closely. However, LTA predicts a straight path to-
wards the goal while our model also predicts fluctuations
as a consequence of the social interaction.

5.4. Tracking

We evaluated the effect of our behavioral model in a
tracking application. Having in mind a video surveillance

Figure 1. Example of behavioral prediction

scenario using a low frame rate webcam, we compare the
number of successful tracks achieved by the different mod-
els under an observation frequency of every 0.4 seconds (2.5
fps) and 1.6 seconds (0.625 fps), in the zara01, zara02
and students03 datasets, keeping behavioral prediction
running every 0.4 seconds in both cases.

To illustrate the positive effect of our behavioral prior in
this setting, we use a simple pixel correlation for the ap-
pearance model. Our tracker is a simple combination of
appearance and behavioral model:

P (p) = Pappearance(p) · Pbehavior(p)

∝ exp

(
− (1−NCC(p))2

2σ2
a

)
exp

(
−|p− p

(t)
i |2

2σ2
b

)
.

where NCC is the normalized cross correlation of pixels,
p

(t)
i is the prediction from the behavioral model, and σa and
σb are the variance parameter for each model. The predicted
position at time t is thus given by

p̂
(t)
i = argmaxp P (p).

Under the less frequent image observation, we treat the be-
havioral prediction as the combined prediction when we do
not have an appearance term.

The video sequences in the datasets have relatively noisy
background. We first apply background subtraction as an
image preprocessing step before we compute pixel correla-
tions. We use a running average as background of the scene,
and regarded a region having small absolute difference from
the model as a background. We start to accumulate back-
ground 5 steps before we start tracking in each sequence.

We experiment with tracking in a subsequence of videos.
As in the case of the previous section, we split the dataset
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into a first half and a second half, train a personal-property
estimator in one fold, and test in the other. Since our social
group estimator is compatible across datasets, in this ex-
periment we use a single group estimator trained using all
three datasets. We start tracking every 16 frames and keep
them running for at most 24 subsequent frames as long as
the ground truth data exist for the scene. The experimental
data contains 55, 64 and 34 subsequences for the zara01,
zara02 and students03 datasets, respectively, in to-
tal for the 2-fold experiments. The tracker starts from a
ground-truth state, with at most 5 past steps available for
personal-property prediction and background subtraction.
Once the tracker starts, no future or ground truth informa-
tion is available.

We compare the tracking performance between a lin-
ear model with full appearance observation under 2.5
fps (LIN+FULL), with less frequent appearance obser-
vation under 0.625 fps (LIN+LESS), LTA model with
full or less frequent appearance observation (LTA+FULL,
LTA+LESS), our model with full or less frequent appear-
ance observation (ATTR+FULL or ATTR+LESS, respec-
tively), and for reference, a simple correlation tracker with-
out any behavioral prior under full image observation.

In this experiment, we use predicted personal proper-
ties for LTA and our model. To comply with the tracking
method in [8], the LTA model uses nearest-neighbor deci-
sions to predict destination, using current direction of ve-
locity and direction to a set of destinations. Our model uses
the prediction method of section 5.

The evaluation consists of calculating how many track-
ers stay within 0.5 meter from the ground-truth annotation
of the same person at the N = {8, 16, 24}-th step since
the initial state. A track that is more than 0.5 meter away
from its corresponding track in the ground-truth data is re-
garded as lost, while a track that is within 0.5 meter from
ground-truth but whose closest track in the ground-truth is
of different person is considered ID switch.

Figure 2 compares the number of successful tracks be-
tween tracking methods. The performance of a tracker
under full appearance observation (2.5 fps) does not vary
among behavioral models, and full appearance observation
always results in performance improvement. However, un-
der less frequent observation, our method outperforms in
zara01 and zara02 dataset. Table 5 summarizes the
number of successful, ID-switched, or lost tracks under less
frequent appearance observation. The stu03 result shows
that the linear model is the best among others. This is likely
the result of irregular type of pedestrians in the dataset: in
those scenes, there are many people who walk around un-
purposefully and stop to chat. Both LTA and our model
assume that a pedestrian is always walking towards the goal
and cannot correctly deal with a standing person. This re-
sulted in better performance for the linear model.

Figure 3. Tracker example. The line indicates the displacement
from the previous frame. Under 0.625 fps, it is hard to find a
correspondence between frames without prior.

Figure 3 shows an example of a tracker from the
zara01 dataset. Our behavioral model gives stronger pref-
erence to keeping the distance between pedestrians in the
same social group constant.

6. Conclusion and Future Work
We propose an agent-based formulation of pedestrian be-

havior and a method to estimate hidden personal proper-
ties. Our evaluation of destination and social group esti-
mation, together with that of the behavioral prediction er-
ror, suggests that it is possible to get a reasonable estimate
of unobservable personal information from purely behav-
ioral and environmental data only. Our tracking experiment
shows that, for usual scenes where pedestrians do not ex-
hibit sudden irregular motions, our behavioral model fur-
ther improves performance over simpler behavioral models
under low frame rates.

It would be interesting to extend our behavioral model by
using an explicit model of pedestrian behavior that accounts
for more that just a walking state. Also, in our future work,
we will take into account the interaction between pedestrian
behavior and scene events or objects.
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