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Abstract

We explore the use of computer vision methods for orga-
nizing, searching, and classifying x-ray scattering images.
X-ray scattering is a technique that shines an intense beam
of x-rays through a sample of interest. By recording the in-
tensity of x-ray deflection as a function of angle, scientists
can measure the structure of materials at the molecular and
nano-scale. Current and planned synchrotron instruments
are producing x-ray scattering data at an unprecedented
rate, making the design of automatic analysis techniques
crucial for future research. In this paper, we devise an
attribute-based approach to recognition in x-ray scattering
images and demonstrate applications to image annotation
and retrieval.

1. Introduction
X-ray scattering is a powerful technique for probing the

physical structure of materials at the molecular and nano-
scale. The technique consists of shining an intense and
collimated x-ray beam through a sample of interest, and
recording the intensity of x-ray deflection as a function of
angle. This redistribution of the intensity of the primary
x-ray beam arises from the interference from the myriad
of microscopic scattering and diffraction events which oc-
cur when the incident x-ray wave interacts with the atoms,
molecules, and nano-scale interfaces in the sample [6, 23].

Premier x-ray scattering and diffraction instruments are
now housed at “synchrotrons” [21, 1]: cyclic electron ac-
celerators in which strong magnetic fields are used to in-
duce the emission of x-ray beams from the circulating elec-
tron beam. Subsequent x-ray optics are used to gener-
ate monochromatic, highly collimated and focused beams
suitable for demanding x-ray experiments. With the con-
struction of next-generation synchrotrons, the materials sci-
ence community has access to x-ray beam flux and bright-
ness previously unimaginable, allowing for extremely rapid
(millisecond) data collection.

Modern synchrotrons are thus beginning to generate
massive quantities of data; far in excess of what human

Figure 1. Images from X-ray Material Dataset. Top row shows
small-angle x-ray scattering (SAXS). Bottom row shows wide-
angle x-ray scattering (WAXS) imagery.

experimenters can manually interpret and analyze. Simul-
taneously, modern instruments are being specifically built
to operate in high-throughput modes. Many physical sys-
tems of interest have large and complicated phase spaces,
which require concomitantly broad exploration. Modern
materials are frequently blends and composites, exhibiting
heterogeneous and hierarchical structuring; the exploration
of these vast multi-component parameter spaces remains an
outstanding challenge. Modern x-ray detectors include on
the order of 1 million 20-bit pixels, and can acquire at 20-
200 Hz. Next-generation beamlines are anticipated to gen-
erate 50,000 to 1,000,000 images/day (1-4 TB/day), with a
synchrotron facility as a whole thereby generating millions
of images per day (∼ 100 TB/day).

It is thus crucial to automate as much of the x-ray scat-
tering workflow as possible. Whereas bespoke analysis rou-
tines can be devised for restricted subsets of experimental
results, a bottleneck remains if a human is required to cate-
gorize, cluster, and select images.

Currently, the standard workflow in an x-ray scattering
experiment consists of an experimental team traveling to
a synchrotron beamline, capturing a detailed dataset over
several days, and then returning to their home institution
with the images for later analysis. Automated analysis can
improve upon this model in crucial ways: providing the ex-
perimental team with immediate feedback on their measure-
ment results, and enabling facile sharing of data and insights
between different research teams. Such tools are at present
not available.
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To the best of our knowledge, this paper presents the first
computer vision based system that takes steps toward au-
tomatic, large-scale assessment of x-ray scattering images
and toward building general purpose tools for organizing
and sharing data between x-ray researchers. Some previous
work [25] uses unsupervised clustering of a dataset with a
limited number of categories to sort diffraction snapshots
into groups; that work does not exploit training on labeled
data and also does not exploit compact feature representa-
tions, hence uses a cropped version of only the center of
an intensity image to make the clustering computationally
feasible. In contrast, we consider the application of modern
techniques in computer vision to the problem of recogniz-
ing appearance characteristics in x-ray scattering images.
We take advantage of recent advances in attribute based
recognition, e.g. [11, 17, 18, 10, 12, 5, 9, 8, 7] for retrieval,
organization, and classification. Attributes can be viewed
as an interpretable mid-level representation for recognition
tasks. They are particularly useful for tasks that involve end
users such as image search [9, 8] where it may be natural
for people to specify initial search desiderata or refinements
using attributes. Attributes are also composable [11] and
can divide the space of images effectively, allowing efficient
search. If desired, attributes can be automatically personal-
ized to a particular user [7].

In this paper we begin by demonstrating that a careful
selection of computer vision techniques makes it possible
to classify x-ray scattering images according to a number
of attributes that are relevant for domain experts. This is
a challenge as classification schemes have been optimized
for realspace imagery (e.g. photographs), whereas x-ray
scattering images are more abstract (essentially raw data).
Physically, x-ray images are produced by scattering into the
far-field, as opposed to focusing onto an image plane, as
in typical optical imaging. Thus, scattering images do not
share most of the image properties that we take for granted
in other computer vision experiments – there is no notion of
objects, position has meaning, there is no spectral informa-
tion, and more.

We go on to consider and analyze scenarios in which
this approach could help material scientists using x-ray scat-
tering and diffraction techniques. The first scenario takes
place during data collection, as thousands of images are col-
lected over hundreds of samples, while varying measure-
ment geometry, as well as physical parameters (tempera-
ture, pressure, etc.). We show very high accuracy for pre-
dicting attributes that indicate problems with the complex
measurement apparatus (e.g. beam blocked, detector sat-
urated) – bearing in mind that the material scientists who
use x-ray instruments are not usually experts on the com-
plex and constantly changing beamline equipment. This
feedback would allow experimental settings to be adjusted
immediately, avoiding costly wastes in measurement time

and effort. The second scenario is automatically tagging
images with attributes. This would allow quick indexing of
potentially relevant attributes or tags that had been specified
by other scientists, something that is only possible through
expert knowledge today. The third scenario is automati-
cally identifying similar x-ray scattering images, possibly
gated by specific attributes. For instance, a researcher might
want to find previous measurements on similar materials, or
identify different materials with similar scattering features.
Attributes allow searching for similar samples while spec-
ifying what aspects of the images are more important for
search.

1.1. X-ray scattering

We use the generic term x-ray scattering to describe
a variety of related techniques: those which measure dif-
fuse scattering (e.g. from roughness), those which measure
diffraction peaks (e.g. from crystal unit cells), those op-
erating in reflection (‘grazing-incidence’) mode, etc. We
also consider both small-angle x-ray scattering (SAXS) and
wide-angle x-ray scattering (WAXS) results, which probe
nano-scale and molecular/atom order respectively.

Modern x-ray scattering instruments typically use two-
dimensional x-ray detectors to simultaneously capture a
wide angular range of the scattering signal. The resultant
two-dimensional arrays of x-ray intensity values are, con-
ceptually, a slice through a three-dimensional “reciprocal-
space” whose intensity distribution non-trivially encodes
the sample’s microscopic structure. The reciprocal-space is
essentially the Fourier-transform of the realspace electron-
density distribution in the sample; however x-ray exper-
iments only record the amplitude (and not the phase) of
the scattered radiation, making direct data inversion im-
possible. Instead, x-ray data must be carefully analyzed
and iteratively fit to candidate models, in order to extract
parameters of physical interest (atom or molecular spac-
ing, crystallographic unit cell, nano-scale shape and pe-
riodicity, grain size, orientation distribution, roughness,
etc.)[20, 13, 19, 24]. X-ray scattering data from two-
dimensional detectors can be thought of as images, which
contain a variety of features (spots, rings, halos, diffuse in-
tensity) which result from different kinds of microscopic
order. Indeed these datasets are frequently visualized using
false-color images, such as those shown in Figure 1. X-ray
measurement experts can oftentimes interpret these image
features ahead of detailed analysis (e.g. sharp peaks indi-
cate crystalline structures, diffuse halos indicate amorphous
order). However, such manual categorization is quickly be-
coming a bottleneck.

Ultimately, the entire process of measurement, analysis,
and exploration is meant to be automated; with the x-ray
instrument itself automatically selecting subsequent sample
formulations for study. This automated materials discov-



ery will require revolutionary progress in data management
such as those described here.

The rest of the paper is organized as follows: In section 2
we describe the dataset and how it is tagged and organized.
In section 3, we evalaute attribute classification for x-ray
scattering data. In section 4, we demonstrate two applica-
tions desired by material science researchers.

2. X-ray Materials Discovery Dataset (XMD)
Our dataset contains images from 13 x-ray scattering

measurement runs – a set of related x-ray scattering im-
ages collected for closely-related material samples, con-
tinuously captured over a short time period. The data
were all collected on the X9 beamline at the National Syn-
chrotron Light Source, an endstation capable of both small-
angle x-ray scattering (SAXS) and wide-angle x-ray scat-
tering (WAXS); in either transmission (TSAXS/TWAXS)
or grazing-incidence (GISAXS/GIWAXS) geometry. The
measurement runs we analyze include images acquired in
all of these measurement modes. The dataset includes a
wide range of different kinds of samples: nano-particles
in solution, lithographic gratings, self-assembling polymer
films, organic semiconductors, etc. The substantial vari-
ety in the samples and measurement modes thus provides
a realistic sampling of x-ray scattering data. Example x-ray
scattering images are shown in Figure 1. The number of im-
ages in each experiment varies between 54 and 618, giving
a total of 2832 single-channel images with intensities in the
range [0, 216].

All of the images have been labeled with 98 binary at-
tributes by a domain expert. These attributes represent
a diverse set of characteristics ranging from the type of
measurement, to appearance based scattering features, to
chemical composition and physical properties of the mate-
rials. Images are labeled with an average of 11.7 attributes.
The attribute vocabulary is organized into groupings by at-
tributes of: G1 experiments, G2 instrumentation, G3 imag-
ing, G4 scattering features, G5 samples, G6 materials, G7
specific substances. A complete list of attributes along with
their group labels is shown in Table 1.

Figure 2 shows the co-occurrence matrix for the 25
most frequent attributes in the dataset. Note that the co-
occurrence matrix tends to become very sparse as we in-
crease the number of attributes, while some pairs of at-
tributes have significantly higher co-occurrence rates. For
example, Specular rod is more likely to co-occur with at-
tribute Ring: Textured than with Ring: Isotropic. This
can be expected on physical grounds: a specular rod only
appears during grazing-incidence (reflection-mode) experi-
ments; the thin films and interfaces thereby probed have a
higher tendency to be anisotropic or textured. In addition,
some attributes are directly dependent on the x-ray scatter-
ing technique used in measurement (e.g. SAXS or WAXS)

Attribute # Attribute #

Thin film [G5] 1646 Silicon [G7] 130
Specular rod [G3] 1597 GTSAXS [G1] 127
Beam off image[G2] 1591 MWCNT [G7] 125
Photonics CCD[G2] 1591 Nanoporous [G5] 125
Ordered [G5] 1462 Theta sweep [G1] 109
GIWAXS [G1] 1439 PDMS [G7] 107
MarCCD [G2] 1241 Saturation artifacts [G3] 97
Horizon[G4] 1171 Peaks: Line z [G4] 90
Linear beamstop [G2] 1156 Circular beamstop [G2] 85
Peaks: Isolated[G4] 1099 Peaks: Line xy [G4] 79
GISAXS[G1] 870 Diffuse low-q: Anisotropic [G4] 78
Ring: Oriented z [G4] 856 Many rings [G4] 78
Polymer [G6] 821 Diffuse low-q: Oriented z [G4] 76
Halo: Isotropic [G4] 791 Misaligned [G3] 76
Ring: Isotropic [G4] 604 Beam streaking [G3] 70
Ring: Textured [G4] 528 Diffuse low-q: Oriented xy [G4] 69
Higher orders: 2 to 3 [G4] 513 Blocked [G3] 62
P3HT [G7] 505 Diffuse specular rod [G4] 62
Ring: Oriented xy [G4] 491 Smeared horizon [G4] 55
SiO2 [G7] 467 Symmetry ring: 4-fold [G4] 55
Vertical streaks [G4] 434 Higher orders: 10 to 20 [G4] 53
Single crystal [G5] 430 Ring doubling [G4] 53
Block-copolymer [G6] 416 Halo: Anisotropic [G4] 46
Peaks: Many/field [G4] 396 Powder [G5] 44
Grating [G5] 375 Specular rod peaks [G4] 41
PCBM [G7] 369 AgBH [G7] 40
Diffuse high-q: Isotropic [G4] 357 Ring: Oriented other [G4] 33
Higher orders: 4 to 6 [G4] 351 Peaks: Line [G4] 23
Weak scattering [G3] 318 Diffuse high-q: Oriented z [G4] 20
Rubrene [G7] 266 Bad beam shape [G3] 19
TSAXS [G1] 264 LaB6 [G7] 16
Higher orders: 7 to 10 [G4] 260 Phi sweep [G1] 16
2D detector obstruction [G3] 224 Peak doubling [G4] 15
Bragg rods [G4] 211 Halo: Oriented xy [G4] 14
Ring: Anisotropic [G4] 205 Polycrystalline [G5] 14
Peaks: Along ring [G4] 201 Diffuse high-q: Oriented xy [G4] 11
Amorphous [G5] 197 Direct [G3] 11
Saturation [G2] 193 Object obstruction [G3] 9
PS-PMMA [G7] 190 Peaks: Line other [G4] 9
Composite [G5] 179 Waveguide streaks [G4] 8
Diffuse low-q: Isotropic [G4] 170 Higher orders: 20 or more [G4] 4
Yoneda [G4] 167 Substrate streaks/Kikuchi [G4] 4
Strong scattering [G3] 159 Diffuse low-q: Oriented other [G4] 3
TWAXS [G1] 152 Halo: Spotted [G4] 3
Halo: Oriented z [G4] 148 Diffuse low-q: Spotted [G4] 2
High background [G4] 142 Diffuse high-q: Spotted [G4] 1
Asymmetric (left/right) [G2] 138 Empty cell [G3] 1
Ring: Spotted [G4] 136 Parasitic slit scattering [G3] 1
Superlattice [G6] 136 Point detector obstruction [G3] 1

Table 1. Fine-grained attributes ordered by number of samples.

High-level attributes Fine-grained attributes

Diffuse high-q Diffuse high-q: Isotrpoic, Oriented xy or z, Spotted
Diffuse low-q Diffuse low-q: (An)Isotrpoic, Oriented xy or z or other, Spotted
Halo Halo: (An)Isotropic, Oriented xy or z, Spotted
Higher orders Higher orders: 2 to 3, 4 to 6, 7 to 10, 10 to 20, 20 or more
Peaks Peaks: Along ring, Isolated, Line xy or z or other, Many/field
Ring (An)Isotropic, Oriented xy or z or other, Spotted, Textures

Table 2. Mapping between high-level and fine-grained attributes

which is directly reflected in the value for attribute Mar-
CCD (true for SAXS samples and false for WAXS ones).
This is particular to the dataset we have chosen to ana-
lyze: on this beamline, a MarCCD detector is used for the
small-angle measurement, whereas a Photonic Sciences de-
tector is used for the wide-angle measurements. These co-
occurrences, however, point to generic kinds of correlations
which can be exploited in the automated analysis of data
coming from particular beamlines. For instance, while in
our dataset Beam off image (detector offset with respect to



Figure 2. Co-occurrence between attributes. Each entry is the
count of samples which has the corresponding pair of attributes.
There are 2832 samples in total. To increase the contrast of the
off-diagonal elements, the diagonal elements are set to zero. In-
dices correspond to order of attributes shown in Table 1

direct x-ray beam) never co-occurs with MarCCD, Linear
beamstop always co-occurs with MarCCD. The correlations
inherent in the tags themselves can thus be exploited in or-
der to hierarchically split datasets. For instance, an initial
analysis can classify images as SAXS or WAXS, making
tag prediction within those classes simpler and more robust.
This procedure can, in principle, be repeated iteratively to
a depth limited by the inherent hierarchical correlations of
the tag taxonomy.

3. Experiments and Results
In this section, we train and evaluate classifiers to predict

each x-ray scattering attribute. In particular, we explore a
number of different standard computer vision features with
one vs. all linear support vector machines (SVMs) to pro-
duce a benchmark on the x-ray materials discovery dataset.

We select several features that are widely used for im-
age classification in computer vision: Downsampled (Tiny
Images) [22], GIST [16], Histogram of Oriented Gradients
(HOG) [3], Pyramid of HOG (PHOG) [2], Local Binary
Patterns (LBP) [15], dense grayscale SIFT [14], and con-
catenation of PHOG with LBP. Downsampled images are
obtained by reducing the image dimensions to 32 × 32.
GIST, an abstract representation of statistics of oriented
structures within the image, is computed in 8 orientations
on 4 × 4 grid at 4 scales from coarse to fine. HOG fea-
tures, which can encode local shape information from re-
gions within an image as a histogram of gradients, are ex-
tracted on 8 × 8 grid with 31 orientations. PHOG is com-

Attribute ds hog phog gist lbp lbpphog sift

Thin film 86.8 89.1 90.2 87.8 86.5 89.6 92.1
Specular rod 79.9 80.1 78.7 78.5 81.1 80.2 74.1
Beam off image 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Photonics CCD 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Ordered 62.8 76.3 77.1 82.1 72.5 78.9 72.6
GIWAXS 99.3 99.8 99.8 99.3 99.8 99.8 98.4
MarCCD 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Horizon 85.9 95.3 95.8 95.0 90.1 94.1 92.5
Lin. beamstop 99.3 96.5 95.8 96.1 99.6 96.8 96.1
Peaks: Iso. 57.4 61.0 61.2 63.0 59.2 61.4 58.4
GISAXS 82.3 92.5 93.5 97.5 95.2 94.7 96.3
Ring: Ori. z 58.7 67.7 67.0 58.2 60.5 71.3 74.3
Polymer 64.6 65.6 65.5 66.4 68.8 66.3 64.5
Halo: Iso. 59.4 60.3 55.9 53.3 76.9 69.4 63.9
Ring: Iso. 46.9 79.1 79.0 79.4 74.1 79.4 71.4
Ring: Text. 46.7 48.5 50.7 45.9 40.3 48.5 43.7
High. ord. 2-3 27.7 34.5 29.7 27.1 29.0 35.8 29.3
P3HT 76.4 83.1 84.0 82.8 82.5 82.4 83.1
Ring: Ori. xy 39.9 50.7 49.6 50.6 52.3 46.3 45.6
SiO2 99.8 99.8 99.8 99.9 100.0 99.8 99.9
Vertical streaks 46.7 68.8 67.9 66.1 73.4 69.2 64.2
Single crystal 74.9 88.2 88.1 90.1 88.3 90.0 81.7
Block-copoly. 55.3 93.2 92.0 95.0 95.4 93.6 84.2
Peaks: Many 44.7 49.1 51.9 67.4 49.9 54.3 53.0
Grating 82.1 87.9 89.3 88.3 87.4 87.6 84.5
PCBM 40.5 55.6 56.4 46.9 52.5 57.2 42.9
Diffuse hq: Iso. 39.1 57.9 54.5 49.3 76.0 59.8 55.9
High. ord. 4-6 28.1 30.9 35.5 35.8 31.4 30.7 37.2
Weak scatter. 44.7 37.9 38.2 46.6 42.1 38.2 25.2
Rubrene 52.1 71.2 71.0 75.7 59.4 67.0 53.9

All 98 Attr. 46.1 53.3 54.2 52.0 54.0 55.5 51.9

Table 3. Average Precision for classification of attributes

Feature No hierarchy SAXS-WAXS

downsampled 42.3 46.1
hog 49.5 53.3
phog 49.3 54.2
gist 47.2 52.0
lbp 50.2 54.0
lbpphog 51.5 55.5
sift 48.2 51.9

Table 4. Mean Average Precision (mAP) for all 98 attribute clas-
sifiers. Right column shows results when the system first tries to
separate SAXS and WAXS imagery before identifying detailed at-
tributes.

puted with 31 orientations in 4 layers from coarse to fine.
LBP summarizes the local structure in an image by compar-
ing each pixel with its neighborhood which can capture very
fine-grained details in the image. For LBP, the uniform LBP
was extracted on a 8×8 grid. SIFT descriptors are invariant
to scaling transformations and robust to moderate perspec-
tive and illumination variations. For SIFT features, we use a
bag-of-words model, with a visual vocabulary produced by
k-means clustering (k=1000). Prior to computing features,
all images are resized to 512 × 512 and a median filter is
applied to remove the extreme pixel values produced by er-
rors in the image acquisition process (a standard practice in
x-ray scattering research).

We utilize support vector machines SVMs [4] to learn vi-
sual models for attributes on these computer vision features.
For each attribute we train a one vs. all linear SVM classi-
fier with parameter C optimized to maximize the AUC mea-
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Peaks: Along ring

Figure 3. Sample precision-recall curves for three attributes. Left shows attribute Linear beamstop with mAP 96.8%. Middle shows
attribute Strong Scattering with mAP 77.2%, but still allows high precision (100%) at low recall (14%). Finally prediction for Peaks:
Along ring with mAP 45.7% is generally poor.

sure (area under precision-recall curve) using cross valida-
tion. Cross validation must be performed carefully in order
to not bias the models unfairly. A given measurement run
will inevitably include replicate measurements of the same
sample, as well as measurements of highly similar samples.
Since the images within a measurement run can be much
more similar than across different runs, “k-fold” cross val-
idation will end up choosing unfair validation sets since it
may partition images from one measurement run into both
train and validation sets. Therefore, instead of randomly
partitioning the samples, we cross validate using as many
folds as number of runs there are in the training set. In each
fold, we train the model on all runs except one and use it
to predict on the excluded one. We repeat this cross valida-
tion process for all runs in training and choose the param-
eter that results in the highest overall area under the curve.
We note that our validation scheme makes the ultimate clas-
sification inherently more challenging; our results are thus
inherently conservative. However, our scheme provides the
best approximation for how these methods would be used
in practice, where data from a new measurement run would
be analyzed using classifiers trained on the complete set of
past measurement runs.
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Figure 4. Mean average precision for attribute prediction. At-
tributes are ordered by the number of positive samples for each.

We also evaluate a combined classifier, training an SVM
on the outputs of the individual feature SVMs, but found
that it did not increase performance over selecting the best
performing feature for each attribute.

We evaluate our classifiers on the x-ray material discov-
ery dataset, containing 13 measurement runs. Similarly as
for the cross validation, random sampling of train/test im-
ages across runs is not advised. Care must be taken to pro-
duce evaluations that are meaningful with regards to gener-
alization capability for future experiments. We take a leave
one out approach to evaluation, where we train our SVM
classifiers on all measurement runs except for one, and eval-
uate predictions of attributes on the excluded run. We repeat
this process for all 13 measurement runs, and average across
runs to evaluate performance.

Another challenge of the x-ray scattering data is that
some attributes may be prevalent in many samples, e.g
SAXS vs. WAXS whereas some attributes may be quite
sparse, e.g. specific material attributes. Therefore the num-
ber of positive samples for an attribute can be quite lim-
ited. Finally, the attributes present in a measurement run
may vary within the run, e.g. some attributes for a partic-
ular sample may appear in some measurements but not in
others (e.g. as the angle of the x-ray beam with respect to
the sample is varied). A useful prediction tool needs to ef-
fectively handle all of these situations.

There are two main x-ray scattering techniques: small-
angle and wide-angle (as described earlier). Given the dif-
ferent nature of images obtained by small-angle (SAXS)
and wide-angle (WAXS) techniques, we build a two-level
classification system, where in the top level we train a clas-
sifier than can separate SAXS from WAXS and the bottom
level contains classifiers for fine-grained attributes corre-
sponding to each technique. In this manner we establish
consistent training sets for fine-grained classifiers. This
two-stage classification also improves performance with re-
spect to flat classification schemes, especially when the set
of positive samples is very small.

This is an unbalanced classification problem, and clas-
sification accuracy becomes a less useful evaluation metric
because performance on the large number of negative exam-



ples outweighs performance on the few positive examples.
Therefore, we use average precision (AP) for evaluation,
which can be more appropriate for unbalanced data.

Results for the 30 most frequent attributes are reported
in Table 3. Examples of precision-recall curves for tags are
shown in Figure 3. In Table 4 we also compare the over-
all performance for all features in two scenarios: 1) using
two level hierarchical classification system described above
and 2) using flat classification without a hierarchy. The re-
sults confirm that pre-filtering SAXS and WAXS data be-
fore fine-grained classification improves performance for
all visual feature types. On average LBPPHOG descrip-
tor performs best on attribute classification. Hence, we use
it as the main descriptor for applications introduced in sec-
tion 4. Due to the imbalanced distribution of samples for
each attribute over the experiments, we also show overall
performance of our classifiers across attributes sorted by
number of positive samples in descending order. Figure 4
shows that performance is strongly aligned with the num-
ber of available positive samples in training. Therefore, our
performance results should greatly improve if our methods
are applied to larger datasets.

Another classification task of great utility to domain ex-
perts, is to reliably predict the coarse high-level charac-
teristics present in images, e.g. Ring vs Ring:Textured or
Ring:Isotropic. From these characteristics, domain experts
can then infer much about the microstructure of the sam-
ple. Therefore, we also build higher level attributes by
merging fine-grained attributes into the following groups:
Diffuse high-q, Diffuse low-q, Halo, Higher Orders, Peaks
and Ring. The mapping between fine-grained attributes
and high-level attributes is presented in Table 2. There is
one important factor for training high-level attributes since
they are no longer specific to SAXS or WAXS data and
both techniques can have produced the same high-level at-
tributes in the resulting images. Therefore, for high-level
attributes we train our classifiers on both SAXS and WAXS,
leading to larger positive training sets. Average precisions
for classification of high-level attributes is reported in Ta-
ble 5. Overall, results are best for LBP descriptor and
LBPPHOG descriptor obtains a slightly lower performance.
Note the significantly higher performance on high-level at-
tributes which is due to more available samples in training
and the fact that it is a somewhat easier task compared to
fine-grained classification.

4. Applications
We apply our recognition systems to two applications

that would be of great use to domain experts in the manage-
ment of realistic x-ray scattering datasets. The first applica-
tion is automatic image annotation (Section 4.1) where the
goal is to tag images with their appropriate attributes. The
second application is image retrieval (Section 4.2) where

Attribute ds hog phog gist lbp lbpphog sift

Diffuse high-q 31.2 72.7 63.6 58.3 74.2 65.6 52.9
Diffuse low-q 64.7 71.9 61.2 65.0 71.6 70.3 58.4
Halo 70.4 73.6 73.6 73.4 80.6 75.0 74.5
Higher orders 62.4 70.1 69.4 76.4 74.7 74.9 72.6
Peaks 73.3 77.7 79.0 83.9 76.6 80.0 78.5
Ring 70.6 96.1 95.5 94.9 95.4 96.1 92.2

Total Average 62.1 77.0 73.7 75.3 78.8 77.0 71.5

Table 5. Average Precision for classification of high-level at-
tributes

we want to retrieve similar images given a query image, or
given a set of query attribute tags.

4.1. Automatic Image Annotation

Given an input image, we would like to automatically tag
the image with its relevant tags. Figure 5 shows automati-
cally predicted attribute tags for example SAXS and WAXS
images. Users can submit new images and the system will
select the best performing classifiers (best performing vi-
sual feature classifier for each tag) to predict attributes au-
tomatically.

This will be a useful application for scattering systems to
generate annotations in real-time. Generally, experiments
are performed and then stored without any relevant meta-
data for later look-up. This application would be useful for
scientists conducting experiments because it could quickly
and automatically annotate all of the scattering data pro-
duced during an experiment. Furthermore, such tags could
be used to organize all of the x-ray scattering experiments
produced by researchers around the world, connecting the
data in ways that is currently infeasible.

4.2. Attribute-based Image Retrieval

We also provide a retrieval based application for our sys-
tem. This application implements a multi-modal attribute-
based retrieval. Users can submit a query image and ask
the system to return a ranked list of similar images. Al-
ternatively, users can specify target attributes and retrieve
relevant images. Example retrieval results using both image
and text-based queries are shown in Figure 6.

The system is highly successful in identifying similar
images; e.g. retrieving measurements of the same materials
from different measurement runs. The addition of tag con-
straints provides a notably useful refinement; successfully
selecting the subset of images that match. These kinds of re-
trievals are useful both for identifying whether the existing
database of images includes measurements of a particular
kind (e.g. whether a particular material has ever exhibited
anisotropic scattering pattern), and can also be useful as an
aid to researchers in managing large datasets (e.g. allowing
them to retrieve an image which they can visually recall,
but whose identity they cannot recall). By allowing differ-
ent experimenters to share datasets, such a system provides



Query Retrieved images

Include attributes:
Diffuse low-q: Isotropic

Include attributes:
Diffuse low-q: Anisotropic

Exclude attributes:
Grating

Include attributes:
Grating

Include attributes:
Halo: Isotropic

Exclude attributes:
Halo: Isotropic

Include attributes:
Higher orders: 10 to 20

Include attributes:
Halo: Isotropic
Exclude attributes:
Ring: Isotropic

Figure 6. Retrieval examples. Left column shows query image. Second from left column shows optional text filters for retrieval. Other
columns show retrieved results.

the opportunity to foster productive collaborations and max-
imal usage of existing data.

5. Conclusion
We have provided an automatic visual recognition based

system for analyzing x-ray scattering data. Our system
takes an attribute based approach to recognition. Evalu-
ations show that our methods already perform well at at-
tribute prediction across a number of experimental scenar-

ios, and that performance may increase in the future as more
data is labeled. We also demonstrate application to attribute
annotation and retrieval. We will release our tools along
with the dataset to the general scientific community for use
in worldwide efforts on x-ray scattering experiments.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Image Predicted tags

(a) Block-copolymer, GISAXS, Linear beamstop, MarCCD, Ordered, Specular rod,
Thin Film, Vertical streaks, Weak scattering, Bragg rods, Silicon
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(d) Blocked, Linear beamstop, MarCCD, TSAXS

(e) AgBH, Beam off image, Higher orders: 10 to 20, Ordered, Photonics CCD
Ring: Isotropic, TWAXS

(f) Beam off image, GIWAXS, Halo: Isotropic, Horizon, PCBM, Photonics CCD,
Ring: Oriented xy, Specular rod, Thin film, Higher orders: 2 to 3

(g) Beam off image, Halo: Isotropic, Photonics CCD, RingL Isotropic, TWAX,
Ordered, Higher orders: 10 to 20, PCBM

(h)
Beam off image, GIWAXS, Horizon, Peaks: Isolated, Peaks: Many / field,
Photonics CCD, Ring: Isotropic, Ring: Oriented z, Specular rod, Thin film,
SiO2, Saturation

Figure 5. Automatic image annotation. Most predictions are cor-
rect, mistakes are highlighted in red.
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